题意:
让你不停的查询区间长度为k的最小值和最大值
一开始用set模拟,发现常熟太大,T了,然后开始学单调队列,看了一会儿还是好理解的,所以就写了,发现G++会T,只能交C++,后来发现
有人线段树也能过,于是就写了一发,还真行,只不过就是吧查询的答案用全局变量来存,减少return的时间消耗,还是只能交C++。
单调队列:
//
// Created by CQU_CST_WuErli
// Copyright (c) 2016 CQU_CST_WuErli. All rights reserved.
//
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define CLR(x) memset(x,0,sizeof(x))
#define OFF(x) memset(x,-1,sizeof(x))
#define MEM(x,a) memset((x),(a),sizeof(x))
#define BUG cout << "I am here" << endl
#define lookln(x) cout << #x << "=" << x << endl
#define SI(a) scanf("%d",&a)
#define SII(a,b) scanf("%d%d",&a,&b)
#define SIII(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define rep(flag,start,end) for(int flag=start;flag<=end;flag++)
#define Rep(flag,start,end) for(int flag=start;flag>=end;flag--)
#define Lson l,mid,rt<<1
#define Rson mid+1,r,rt<<1|1
#define Root 1,n,1
const int INF_INT=0x3f3f3f3f;
const long long INF_LL=0x7fffffff;
const int MOD=1e9+7;
typedef long long ll;
using namespace std;
struct Sta
{
int val,id;
Sta(int val,int id):val(val),id(id){}
};
const int N=1000010;
int a[N];
int n,k;
int ans[N];
void getmin() {
deque q;
rep(i,1,k-1) {
while (q.size() && q[q.size()-1].val>=a[i]) q.pop_back();
q.push_back(Sta(a[i],i));
}
rep(i,k,n) {
while (q.size() && q.back().val>=a[i]) q.pop_back();
q.push_back(Sta(a[i],i));
while (q.size() && q.front().id<=i-k) q.pop_front();
ans[i-k+1]=q.front().val;
}
rep(i,1,n-k+1) {
printf("%d%c",ans[i],i1?' ':'\n');
}
}
void getmax() {
deque q;
rep(i,1,k-1) {
while (q.size() && q.back().val<=a[i]) q.pop_back();
q.push_back(Sta(a[i],i));
}
rep(i,k,n) {
while (q.size() && q.back().val<=a[i]) q.pop_back();
q.push_back(Sta(a[i],i));
while (q.size() && q.front().id<=i-k) q.pop_front();
ans[i-k+1]=q.front().val;
}
rep(i,1,n-k+1) {
printf("%d%c",ans[i],i1?' ':'\n');
}
}
int main(int argc, char const *argv[]) {
#ifdef LOCAL
freopen("C:\\Users\\john\\Desktop\\in.txt","r",stdin);
// freopen("C:\\Users\\john\\Desktop\\out.txt","w",stdout);
#endif
while(SII(n,k)==2) {
rep(i,1,n) SI(a[i]);
getmin();
getmax();
}
return 0;
}
线段树:
//
// Created by CQU_CST_WuErli
// Copyright (c) 2016 CQU_CST_WuErli. All rights reserved.
//w
#include
#define CLR(x) memset(x,0,sizeof(x))
#define OFF(x) memset(x,-1,sizeof(x))
#define MEM(x,a) memset((x),(a),sizeof(x))
#define BUG cout << "I am here" << endl
#define lookln(x) cout << #x << "=" << x << endl
#define SI(a) scanf("%d",&a)
#define SII(a,b) scanf("%d%d",&a,&b)
#define SIII(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define rep(flag,start,end) for(int flag=start;flag<=end;flag++)
#define Rep(flag,start,end) for(int flag=start;flag>=end;flag--)
#define Lson l,mid,rt<<1
#define Rson mid+1,r,rt<<1|1
#define Root 1,n,1
const int INF_INT=0x3f3f3f3f;
const long long INF_LL=0x7fffffff;
const int MOD=1e9+7;
#define max(a,b) a>b?a:b
#define min(a,b) a
const int N=1000010*4;
int n,k;
int ans1[1000010*4];
int ans2[1000010*4];
void pushup(int rt) {
ans1[rt]=max(ans1[rt<<1],ans1[rt<<1|1]);
ans2[rt]=min(ans2[rt<<1],ans2[rt<<1|1]);
}
void build(int l,int r,int rt) {
int mid;
if (l==r) {
scanf("%d",ans1+rt);
ans2[rt]=ans1[rt];
return ;
}
mid=(l+r)>>1;
build(Lson);
build(Rson);
pushup(rt);
}
int maxx;
void queryMax(int L,int R,int l,int r,int rt) {
int mid;
if (L<=l && r<=R) {
maxx=max(maxx,ans1[rt]);
return;
}
mid=(l+r)>>1;
if (L<=mid) queryMax(L,R,Lson);
if (R>mid) queryMax(L,R,Rson);
return;
}
int minx;
void queryMin(int L,int R,int l,int r,int rt) {
int mid;
if (L<=l && r<=R) {
minx=min(minx,ans2[rt]);
return;
}
mid=(l+r)>>1;
if (L<=mid) queryMin(L,R,Lson);
if (R>mid) queryMin(L,R,Rson);
return;
}
int main(int argc, char const *argv[]) {
#ifdef LOCAL
freopen("C:\\Users\\john\\Desktop\\in.txt","r",stdin);
// freopen("C:\\Users\\john\\Desktop\\out.txt","w",stdout);
#endif
int i;
while(SII(n,k)==2) {
build(1,n,1);
for(i=1;i<=n-k+1;i++) {
minx=INF_INT;
queryMin(i,i+k-1,1,n,1);
printf("%d",minx);
if (i1 ) printf(" ");
else printf("\n");
}
for(i=1;i<=n-k+1;i++) {
maxx=-INF_INT;
queryMax(i,i+k-1,1,n,1);
printf("%d",maxx);
if (i1) printf(" ");
else printf("\n");
}
}
return 0;
}