题意:
给定一个矩阵,让你其中有1,2,3,0,让你在里面寻找一个十字,是的这个十字所包含的数字的乘积最大。
解法:
这个完全可以预处理处八个方向的前缀,然后暴力枚举中心即可,要注意的是,十字的四条边长是一样的,另外因为数字太大,所以用log把乘变成加,就可以比较大小了,不然直接模是无法比大小的。代码略长。。。
//
// Created by CQU_CST_WuErli
// Copyright (c) 2016 CQU_CST_WuErli. All rights reserved.
//
//#pragma comment(linker, "/STACK:102400000,102400000")
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define CLR(x) memset(x,0,sizeof(x))
#define OFF(x) memset(x,-1,sizeof(x))
#define MEM(x,a) memset((x),(a),sizeof(x))
#define BUG cout << "I am here" << endl
#define lookln(x) cout << #x << "=" << x << endl
#define SI(a) scanf("%d", &a)
#define SII(a,b) scanf("%d%d", &a, &b)
#define SIII(a,b,c) scanf("%d%d%d", &a, &b, &c)
const int INF_INT=0x3f3f3f3f;
const long long INF_LL=0x7f7f7f7f;
const int MOD=1e9+7;
const double eps=1e-10;
const double pi=acos(-1);
typedef long long ll;
using namespace std;
const int N = 1010;
const double lg2 = log(2);
const double lg3 = log(3);
int n;
char a[N][N];
double logs[N][N];
double L[N][N], R[N][N], U[N][N], D[N][N];
double LU[N][N], RU[N][N], LD[N][N], RD[N][N];
int preL[N][N], preR[N][N], preU[N][N], preD[N][N];
int preLU[N][N], preRU[N][N], preLD[N][N], preRD[N][N];
void gao() {
CLR(L);
CLR(preL);
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) if (a[i][j] != '0') {
if (j == 1 || a[i][j - 1] == '0') {
L[i][j] = logs[i][j];
preL[i][j] = 1;
}
else {
L[i][j] = L[i][j - 1] + logs[i][j];
preL[i][j] = preL[i][j - 1] + 1;
}
}
}
CLR(R);
CLR(preR);
for (int i = 1; i <= n; i++) {
for (int j = n; j >= 1; j--) if (a[i][j] != '0') {
if (j == n || a[i][j + 1] == '0') {
R[i][j] = logs[i][j];
preR[i][j] = 1;
}
else {
R[i][j] = R[i][j + 1] + logs[i][j];
preR[i][j] = preR[i][j + 1] + 1;
}
}
}
CLR(U);
CLR(preU);
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) if (a[i][j] != '0') {
if (i == 1 || a[i - 1][j] == '0') {
U[i][j] = logs[i][j];
preU[i][j] = 1;
}
else {
U[i][j] = U[i - 1][j] + logs[i][j];
preU[i][j] = preU[i - 1][j] + 1;
}
}
}
CLR(D);
CLR(preD);
for (int i = n; i >= 1; i--) {
for (int j = 1; j <= n; j++) if (a[i][j] != '0') {
if (i == n || a[i + 1][j] == '0') {
D[i][j] = logs[i][j];
preD[i][j] = 1;
}
else {
D[i][j] = D[i + 1][j] + logs[i][j];
preD[i][j] = preD[i + 1][j] + 1;
}
}
}
CLR(LU);
CLR(preLU);
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) if (a[i][j] != '0') {
if (i == 1 || j == 1 || a[i - 1][j - 1] == '0') {
LU[i][j] = logs[i][j];
preLU[i][j] = 1;
}
else {
LU[i][j] = LU[i - 1][j - 1] + logs[i][j];
preLU[i][j] = preLU[i - 1][j - 1] + 1;
}
}
}
CLR(RU);
CLR(preRU);
for (int i = 1; i <= n; i++) {
for (int j = n; j >= 1; j--) if (a[i][j] != '0') {
if (i == 1 || j == n || a[i - 1][j + 1] == '0') {
RU[i][j] = logs[i][j];
preRU[i][j] = 1;
}
else {
RU[i][j] = RU[i - 1][j + 1] + logs[i][j];
preRU[i][j] = preRU[i - 1][j + 1] + 1;
}
}
}
CLR(LD);
CLR(preLD);
for (int i = n; i >= 1; i--) {
for (int j = 1; j <= n; j++) if (a[i][j] != '0') {
if (i == n || j == 1 || a[i + 1][j - 1] == '0') {
LD[i][j] = logs[i][j];
preLD[i][j] = 1;
}
else {
LD[i][j] = LD[i + 1][j - 1] + logs[i][j];
preLD[i][j] = preLD[i + 1][j - 1] + 1;
}
}
}
CLR(RD);
CLR(preRD);
for (int i = n; i >= 1; i--) {
for (int j = n; j >= 1; j--) if (a[i][j] != '0') {
if (i == n || j == n || a[i + 1][j + 1] == '0') {
RD[i][j] = logs[i][j];
preRD[i][j] = 1;
}
else {
RD[i][j] = RD[i + 1][j + 1] + logs[i][j];
preRD[i][j] = preRD[i + 1][j + 1] + 1;
}
}
}
}
int main(int argc, char const *argv[]) {
#ifdef LOCAL
freopen("C:\\Users\\john\\Desktop\\in.txt","r",stdin);
// freopen("C:\\Users\\john\\Desktop\\out.txt","w",stdout);
#endif
while (SI(n) == 1) {
CLR(logs);
for (int i = 1; i <= n; i++)
scanf("%s", a[i] + 1);
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (a[i][j] == '0') logs[i][j] = -1;
else if (a[i][j] == '1') logs[i][j] = 0;
else if (a[i][j] == '2') logs[i][j] = lg2;
else if (a[i][j] == '3') logs[i][j] = lg3;
}
}
gao();
double ans = -1;
pair pos;
int flag = 0;
int Len;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) if (a[i][j] != '0') {
double tmp = 0;
int len = min(min(preL[i][j], preR[i][j]), min(preU[i][j], preD[i][j]));
tmp += L[i][j] - L[i][j - len];
tmp += R[i][j] - R[i][j + len];
tmp += U[i][j] - U[i - len][j];
tmp += D[i][j] - D[i + len][j];
tmp -= 3 * logs[i][j];
if (tmp > ans) {
ans = tmp;
pos = make_pair(i, j);
flag = 1;
Len = len;
}
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) if (a[i][j] != '0') {
double tmp = 0;
int len = min(min(preLD[i][j], preRD[i][j]), min(preLU[i][j], preRU[i][j]));
tmp += LU[i][j] - LU[i - len][j - len];
tmp += RU[i][j] - RU[i - len][j + len];
tmp += LD[i][j] - LD[i + len][j - len];
tmp += RD[i][j] - RD[i + len][j + len];
tmp -= 3 * logs[i][j];
if (tmp > ans) {
ans = tmp;
pos = make_pair(i, j);
flag = 2;
Len = len;
}
}
}
if (ans == -1) {
cout << 0 << endl;
continue;
}
int x = pos.first, y = pos.second;
ll tmp = 1;
if (flag == 1) {
for (int i = 1; i < Len; i++) {
tmp = tmp * (a[x][y - i] - '0') % MOD;
tmp = tmp * (a[x][y + i] - '0') % MOD;
tmp = tmp * (a[x - i][y] - '0') % MOD;
tmp = tmp * (a[x + i][y] - '0') % MOD;
}
tmp = tmp * (a[x][y] - '0') % MOD;
}
else {
for (int i = 1; i < Len; i++) {
tmp = tmp * (a[x - i][y - i] - '0') % MOD;
tmp = tmp * (a[x - i][y + i] - '0') % MOD;
tmp = tmp * (a[x + i][y - i] - '0') % MOD;
tmp = tmp * (a[x + i][y + i] - '0') % MOD;
}
tmp = tmp * (a[x][y] - '0') % MOD;
}
cout << tmp << endl;
}
return 0;
}