- 国内的AI大模型有可能超过ChatGPT吗?
AIWritePaper官方账号
PromptChatGPTAIWritePaperchatgpt人工智能深度学习AI写作AIGC
这是一个非常有前瞻性和现实意义的问题。要回答国内AI是否有可能超过ChatGPT,我们需要从多个方面来分析,包括技术基础、数据资源、应用场景、政策支持以及人才储备等。以下是对这一问题的详细探讨:1.技术基础(1)现状国内AI技术:国内的AI技术发展迅速,尤其在深度学习、自然语言处理(NLP)和计算机视觉等领域已经取得了显著进展。例如,百度的文心一言、阿里的通义千问等大语言模型(LLM)已经在技术上
- 【Lora微调】提高模型效率的创新方法
@fishv
人工智能大模型微调Lora
前言在自然语言处理(NLP)和机器学习的研究和应用中,随着模型规模的不断扩大,模型训练的计算成本和存储需求也不断攀升。大型预训练模型,如GPT、BERT等,虽然在许多任务上表现出色,但它们的训练和微调通常需要巨大的计算资源,这使得许多研究者和开发者无法充分利用这些模型进行个性化或领域特定的调整。为了在保持模型性能的同时减少计算开销,**Lora(Low-RankAdaptation)**应运而生。
- 从文字到思维:呆马GPT在人工智能领域的创新之旅
呆码科技
gpt人工智能
引言生成式预训练变换器(GenerativePre-trainedTransformer,简称GPT)领域是人工智能技术中的一大革新。自OpenAI推出第一代GPT以来,该技术经历了多代发展,不断提升模型的规模、复杂度和智能化程度。GPT模型通过在大规模数据集上进行预训练,学习语言的统计规律和世界知识,然后在特定任务上进行微调,以适应不同的应用需求。GPT领域的发展推动了自然语言处理(NLP)技术
- BERT模型在情感分析中的应用:探寻文本情感的智能之路
Echo_Wish
前沿技术人工智能bert人工智能深度学习
随着互联网的普及和社交媒体的兴起,情感分析(SentimentAnalysis)已成为自然语言处理(NLP)领域的重要研究方向。情感分析通过对文本数据的分析,识别其中所表达的情感倾向(如正面、负面或中性)。近年来,BERT(BidirectionalEncoderRepresentationsfromTransformers)模型凭借其强大的上下文理解能力,在情感分析中展现出了卓越的性能。本文将深
- 【自然语言处理(NLP)】NLTK的使用(分句、分词、词频提取)
道友老李
自然语言处理(NLP)自然语言处理人工智能
文章目录介绍NLTK主要功能模块安装使用分句分词去除标点符号去除停用词stopword噪音单词,词频提取个人主页:道友老李欢迎加入社区:道友老李的学习社区介绍自然语言处理(NaturalLanguageProcessing,NLP)是计算机科学领域与人工智能领域中的一个重要方向。它研究的是人类(自然)语言与计算机之间的交互。NLP的目标是让计算机能够理解、解析、生成人类语言,并且能够以有意义的方式
- 【自然语言处理(NLP)】序列数据研究(创建序列数据、简单的MLP模型、预测结果分析)
道友老李
自然语言处理(NLP)自然语言处理人工智能
文章目录介绍序列数据研究导包安装d2l创建序列数据创建模型开始训练预测多步预测结论个人主页:道友老李欢迎加入社区:道友老李的学习社区介绍自然语言处理(NaturalLanguageProcessing,NLP)是计算机科学领域与人工智能领域中的一个重要方向。它研究的是人类(自然)语言与计算机之间的交互。NLP的目标是让计算机能够理解、解析、生成人类语言,并且能够以有意义的方式回应和操作这些信息。N
- 网络安全大模型和人工智能场景及应用理解
hao_wujing
web安全安全
本文通过通俗易懂的方式的进行阐述,大家读完觉得有帮助记得及时关注和点赞!!!一、网络安全大模型的概述网络安全大模型是一种用于识别和应对各种网络安全威胁的模型。它通过分析网络数据包、网络行为等信息,识别潜在的网络安全事件,并采取相应的措施进行防御。人工智能(AI)是指由计算机系统或机器执行的智能任务,通常需要人类智能来完成。AI的一个重要分支是(NLP),即让计算机理解和生成自然语言。NLP的一个核
- 自动检测和机器审核系统实现
╰つ゛木槿
javaeasyuijavascriptpythonjava自然语言处理
目录一、自动检测和机器审核实现步骤1.文本预处理步骤细节:2.关键词检测步骤细节:3.情感分析与情境理解步骤细节:4.机器学习模型训练步骤细节:5.深度学习模型步骤细节:6.多模态审查步骤细节:7.用户行为分析与违规预测步骤细节:总结二、常用的分词工具1.jieba2.THULAC3.HanLP4.SnowNLP5.LAC(LexicalAnalysisofChinese)6.PyLDAvis(结
- 使用 Tokenizers 分割文本:深入了解与实践
AWsggdrg
python
在开发应用自然语言处理(NLP)模型时,一个常见的需求是将文本拆分为较小的块,通常称为“tokens”。现代语言模型对tokens的数量有限制,因此在处理长文本时,我们需要仔细计算tokens以避免超过限制。本文将介绍如何使用不同的tokenizer来分割文本,并提供实用代码示例。技术背景介绍自然语言处理中的tokenization是指将文本拆分为更小的、可管理的单元,称为tokens。使用tok
- Python 如何使用 Bert 进行中文情感分析
程序员徐师兄
Python入门专栏pythonbert开发语言情感分析
前言在自然语言处理(NLP)领域,情感分析是一个非常常见且重要的应用。情感分析通常用于识别文本中的情感,例如判断一条微博或评论是正面、负面还是中性。在过去的几年中,随着深度学习的发展,BERT(BidirectionalEncoderRepresentationsfromTransformers)模型迅速成为了处理自然语言的强大工具。BERT是一种基于Transformer架构的预训练模型,它能够
- 深入理解旋转位置编码(RoPE)及其在大型语言模型中的应用
tangjunjun-owen
语言模型-多模态大模型语言模型人工智能自然语言处理RoPE旋转位置编码
文章目录前言一、旋转位置编码原理1、RoPE概述2、复数域内的旋转1、位置编码生成2、应用位置编码二、RoPE的实现细节1、RotaryEmbedding类设计2、apply_rotary_pos_emb函数3、demo_apply_rotary_pos_emb函数三、完整RoPE代码Demo前言随着自然语言处理(NLP)领域的快速发展,预训练的语言模型如BERT、GPT系列、PaLM、Qwen等
- [python][whl]pyltp的whl格式文件所有版本下载地址汇总
FL1623863129
Pythonpython开发语言
pyltp:Python中的中文自然语言处理工具在数字化时代,自然语言处理(NLP)成为了与机器进行交互的关键技术。对于中文,由于其独特的语言结构和复杂性,专门的工具和库显得尤为重要。pyltp正是这样一个为中文NLP任务设计的Python库,它封装了LTP(LanguageTechnologyPlatform)的核心功能,使得开发者能够轻松地在Python环境中进行中文文本的处理和分析。pylt
- Java 大视界 -- Java 大数据文本分析与自然语言处理:从文本挖掘到智能对话
一只蜗牛儿
java大数据自然语言处理
在当今的信息化时代,数据成为了重要的资源。特别是文本数据,随处可见,如社交媒体、新闻网站、技术文档、客户反馈等,这些都包含着大量的潜在信息。因此,如何从海量的文本中提取有价值的信息,成为了大数据分析领域的重要课题。Java作为一种高效、灵活的编程语言,在大数据文本分析与自然语言处理(NLP)中发挥着至关重要的作用。本文将介绍如何利用Java开发大数据文本分析和自然语言处理(NLP)应用,带领你从文
- 未登录词 Out-of-Vocabulary, OOV
risc123456
nlp
未登录词oov未登录词(Out-of-Vocabulary,OOV)是指在训练数据中没有出现过的词汇,但在测试数据或实际应用中却出现了。未登录词是自然语言处理(NLP)任务中常见的挑战之一,因为它们可能导致模型无法正确处理或理解这些词汇,从而影响模型的性能。以下是一些关于未登录词的详细解释和处理方法:###未登录词的来源1.**罕见词**:在训练数据中出现次数非常少的词,可能在训练过程中被忽略或未
- 大语言模型原理与工程实践:预训练数据构建
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:预训练数据构建1.背景介绍大语言模型(LargeLanguageModels,LLMs)近年来在自然语言处理(NLP)领域取得了显著的进展。诸如GPT-3、BERT等模型在各种任务中表现出色,从文本生成到情感分析,再到机器翻译,几乎无所不能。这些模型的成功很大程度上依赖于预训练数据的质量和规模。预训练数据的构建不仅影响模型的性能,还决定了模型的泛化能力和应用范围。在本文中
- 大语言模型原理与工程实践:网页数据
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:网页数据1.背景介绍在当今信息爆炸的时代,网页数据成为了大数据的重要来源之一。网页数据不仅包含了丰富的文本信息,还包括了图像、视频、音频等多媒体内容。大语言模型(LargeLanguageModels,LLMs)作为自然语言处理(NLP)领域的前沿技术,能够从海量的网页数据中提取有价值的信息,进行文本生成、情感分析、问答系统等多种任务。大语言模型的成功离不开深度学习技术的
- 使用VolcEngine Maas Chat进行语言模型对话的入门指南
dagGAIYD
语言模型人工智能自然语言处理python
技术背景介绍VolcEngineMaasChat模型提供了一种便捷的方式进行对话接口的设计与实现,特别是对于自然语言处理(NLP)应用。通过简单的API调用,开发者可以轻松集成强大的AI对话能力到他们的应用中。本文将指导您如何使用VolcEngineMaasChat进行对话交互。核心原理解析VolcEngineMaasChat利用大语言模型来处理和生成自然语言,在接收到用户的输入后,模型会通过分析
- 使用ModelScope实现高效句嵌入生成
dagGAIYD
python
技术背景介绍在自然语言处理(NLP)任务中,向量化文本(嵌入)是许多下游任务(如语义搜索、文本分类、问答系统等)的核心步骤之一。通过将文本转换为密集向量表示,我们可以在高维向量空间中构建更加高效的表示和检索算法。ModelScope是阿里云开源的一个模型和数据集管理平台,提供了大量预训练模型,涵盖了各种领域和任务。ModelScopeEmbeddings是一个与LangChain社区集成的工具类,
- Transformer架构原理详解:多头注意力(MultiHead Attention)
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
Transformer,多头注意力,Multi-HeadAttention,机器翻译,自然语言处理,深度学习1.背景介绍近年来,深度学习在自然语言处理(NLP)领域取得了显著进展。传统的循环神经网络(RNN)在处理长序列数据时存在效率低下和梯度消失等问题。为了解决这些问题,谷歌于2017年提出了Transformer架构,并将其应用于机器翻译任务,取得了突破性的成果。Transformer的核心创
- 多头潜在注意力(MLA)是怎么来的,什么原理,能用简单的示例解释么
百态老人
学习
多头潜在注意力(Multi-HeadLatentAttention,简称MLA)是一种改进的注意力机制,旨在提高自然语言处理(NLP)模型的推理效率和性能。其核心思想是通过低秩联合压缩键(Key)和值(Value),减少推理过程中所需的内存和计算资源,从而实现更高效的处理。MLA的原理在传统的多头注意力机制(MHA)中,每个输入token的键和值需要被缓存,这导致了巨大的内存开销。具体来说,对于每
- 从0到1打造企业AI知识库-课程目录
MaxCode-1
人工智能AIGC知识图谱LangchainXinference
课程名称:「从0到1打造企业AI知识库:实用指南与生产落地」课程目录第一章:AI企业知识库的前景与价值1.企业知识库的概念与意义1.1什么是企业知识库?-企业知识库的核心组成-企业知识库的类型1.2企业知识库如何赋能内部协作与创新。2.AI在知识库中的作用AI赋能的核心技术:NLP、知识图谱、大模型。AI知识库的未来趋势与行业案例。第二章:搭建企业知识库的整体规划3.从需求分析到方案设计识别业务场
- 深度学习Transformer框架
Clown爱电脑
深度学习transformer人工智能自然语言处理机器学习
Transformer是一种深度学习框架,专门用于处理序列数据。它是2017年由Vaswani等人提出的,在NLP领域取得了很大的成功。Transformer的主要优势在于它可以并行地处理输入序列中的所有元素,并且不依赖于序列长度。它使用了self-attention机制,可以在序列中不同位置的元素之间建立联系。这使得Transformer在许多NLP任务中取得了最先进的性能。此外,Transfo
- Transformer模型全面解析:工作原理、应用与未来展望*
泰山AI
AI大模型应用开发transformer
概述:深入探讨Transformer模型的工作原理,分析其在NLP领域的应用场景,并展望其未来发展趋势。本文为您提供关于Transformer模型的全面指南。正文Transformer模型全面解析:工作原理、应用与未来展望在人工智能的浪潮中,Transformer模型以其强大的性能和广泛的应用场景,成为了自然语言处理(NLP)领域的一颗璀璨明星。本文将对Transformer模型进行深入剖析,从工
- 一切皆是映射:Transformer架构全面解析
AI天才研究院
计算大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
背景介绍自2017年,Transformer(自注意力机制)架构的问世以来,它已经成为自然语言处理(NLP)领域的主流技术之一。Transformer架构的出现,使得自然语言处理的任务变得更加简单、高效,同时也为许多其他领域提供了灵感。通过深入剖析Transformer,我们可以更好地理解其核心概念、原理和实际应用场景。这篇文章将全面解析Transformer架构,从核心概念到实际应用,帮助读者深
- 2.6 聚焦:Word Embedding
少林码僧
AI大模型应用实战专栏wordembedding
聚焦:WordEmbeddingWordEmbedding(词嵌入)是一种将词语转化为低维向量表示的技术,使得词语在数学空间中具有语义上的相似性。它是自然语言处理(NLP)中不可或缺的一部分,为文本数据提供了强大的表示能力。与传统的基于词频的词袋模型(Bag-of-Words)相比,WordEmbedding能够捕捉到词语之间更深层的语义和上下文信息。1.词嵌入的定义与作用WordEmbeddin
- Transformer架构原理详解:编码器(Encoder)和解码器(Decoder)
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
Transformer,编码器,解码器,自注意力机制,多头注意力,位置编码,序列到序列,自然语言处理1.背景介绍近年来,深度学习在自然语言处理(NLP)领域取得了显著进展,其中Transformer架构扮演着至关重要的角色。自2017年谷歌发布了基于Transformer的机器翻译模型BERT以来,Transformer及其变体在各种NLP任务上取得了突破性的成果,例如文本分类、问答系统、文本摘要
- ChatGPT 绘图的工作原理
ChatGPT的绘图功能结合了自然语言处理(NLP)和图像生成的技术,这种综合能力依赖于预训练模型(如GPT-4)和图像生成模型(如DALL-E)之间的紧密协作。ChatGPT本质上是一个大规模的语言模型,但通过与图像生成模型集成,它得以执行基于描述生成图像的任务。接下来,我们将从模型架构、训练方法、推理机制和一些技术挑战等方面,详细讨论ChatGPT进行绘图的工作原理。
- 2024 年技术盘点与展望:从 AI 辅助到个人成长的多元探索
109702008
杂谈人工智能
一、引言2024年,技术领域的发展日新月异,我在这片汹涌的浪潮中不断探索与成长。这一年,我不仅见证了人工智能技术的飞速发展,还通过AI辅助创作、AI赋能编程以及参与各类竞赛与课程,实现了个人技术的显著提升与视野的拓展。本文将从总结盘点的角度,回顾我在技术领域的成长历程,并对未来进行展望。二、AI辅助创作:提升写作效率与质量在自然语言处理技术(NLP)的推动下,AI写作工具成为了我的得力助手。这些工
- 17-7 向量数据库之野望7 - PostgreSQL 和pgvector
拉达曼迪斯II
AIGC学习数据库管理工具AI创业数据库postgresql人工智能机器学习AIGC搜索引擎
PostgreSQL是一款功能强大的开源对象关系数据库系统,它已将其功能扩展到传统数据管理之外,通过pgvector扩展支持矢量数据。这一新增功能满足了对高效处理高维矢量数据日益增长的需求,这些数据通常用于机器学习、自然语言处理(NLP)和推荐系统等应用。https://github.com/mazzasaverio/find-your-opensource-project什么是pgvector?
- 使用Python实现LLM的文本生成:风格迁移与内容控制
二进制独立开发
GenAI与Python非纯粹GenAIpython开发语言人工智能自然语言处理分布式语言模型transformer
文章目录引言1.大型语言模型(LLM)概述1.1Transformer架构1.2预训练与微调2.文本生成基础2.1无条件生成2.2条件生成3.风格迁移3.1风格迁移的基本原理3.2使用Python实现风格迁移4.内容控制4.1内容控制的基本原理4.2使用Python实现内容控制5.高级技巧与优化5.1多轮对话生成5.2生成参数优化6.应用场景与未来展望结论引言随着自然语言处理(NLP)技术的快速发
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement