- BP神经网络的传递函数
大胜归来19
MATLAB
BP网络一般都是用三层的,四层及以上的都比较少用;传输函数的选择,这个怎么说,假设你想预测的结果是几个固定值,如1,0等,满足某个条件输出1,不满足则0的话,首先想到的是hardlim函数,阈值型的,当然也可以考虑其他的;然后,假如网络是用来表达某种线性关系时,用purelin---线性传输函数;若是非线性关系的话,用别的非线性传递函数,多层网络时,每层不一定要用相同的传递函数,可以是三种配合,可
- 神经网络传递函数sigmoid,神经网络传递函数作用
快乐的小荣荣
神经网络机器学习深度学习人工智能
神经网络传递函数选取不同会有特别大差别嘛?只是最后一层,但前面层是非线性,那么可能存在区别不大的情况。线性函数f(a*input)=af(input),一般来说,input为向量,最简化情况下,可以假设input的各个维度,a1=a2=a3。。。意味着你线性层只是简单的对输入做了scale~而神经网络能起作用的原因,在于通过足够复杂的非线性函数,来模拟任何的分布。所以,神经网络必须要用非线性函数。
- 数学建模、运筹学之非线性规划
AgentSmart
算法学习算法动态规划线性代数线性规划
数学建模、运筹学之非线性规划一、最优化问题理论体系二、梯度下降法——无约束非线性规划三、牛顿法——无约束非线性规划四、只包含等值约束的拉格朗日乘子法五、不等值约束非线性规划与KKT条件一、最优化问题理论体系最优化问题旨在寻找全局最优值(或为最大值,或为最小值)。最优化问题一般可以分为两个部分:目标函数与约束条件。该问题的进一步细分也是根据这两部分的差异。最优化问题根据变量的取值范围不同可以划分为一
- 弦截法-C++【可直接复制粘贴/欢迎评论点赞】
月白风清江有声
数值计算方法与算法c++算法开发语言
弦截法(也称为弦切法)在C++中实现时,是一种用于求解非线性方程根的迭代方法。下面从背景、优点和缺点三个方面进行阐述:背景弦截法是基于牛顿迭代法的一种改进方法,它避免了牛顿迭代法中直接求导的复杂性。在牛顿迭代法中,每一步迭代都需要计算函数的导数,这在函数形式复杂或导数不易求解时变得尤为困难。而弦截法则利用函数值的差商来近似导数的倒数,从而简化了计算过程。在C++中实现弦截法,通常是通过定义待求解的
- 二叉树--python
电子海鸥
Python数据结构与算法python开发语言数据结构
二叉树一、概述1、介绍是一种非线性数据结构,将数据一分为二,代表根与叶的派生关系,和链表的结构类似,二叉树的基本单元是结点,每个节点包括值和左右子节点引用。每个节点都有两个引用(类似于双向链表),分别指向左子节点和右子节点,该节点被称为这两个子节点的父节点。当给定一个二叉树的结点时,我们将在该节点的左子节点以及其以下结点所形成的树称为左子树,同理,右子节点的部分被称为右子树。在二叉树中,除了叶节点
- 数据结构.
小珑也要变强
数据结构
文章目录自我介绍数据结构基础概念简介线性结构和非线性结构线性结构非线性结构前驱和后继你的点赞评论就是对博主最大的鼓励当然喜欢的小伙伴可以:点赞+关注+评论+收藏(一键四连)哦~自我介绍 Hello,大家好,我是小珑也要变强(也是小珑),我是易编程·终身成长社群的一名“创始团队·嘉宾”和“内容共创官”,现在我来为大家介绍一下有关物联网-嵌入式方面的内容。数据结构基础概念简介 1968年美国克务特
- 非线性成长
yeedom
前言一个环境长期越稳定,线性法则在其中就越适用;相反,如果一个环境变化越快、越频繁,则非线性法则越容易在其中起主导作用创业是让人快速精进、快速成长的最好环境,至少是之一解决问题,是创业过程中我所有学习和成长的唯一意义,也是我学习和成长的唯一动力打破自身边界,不断上行去看到更大的世界,了解更多顶尖高手在关注什么、如何思考,以及如何才能成为那样的高手职业生涯三阶段工具人(Handler)需要什么,就学
- 【无线通信】误差矢量幅度(EVM)
守月满空山雪照窗
无线通信无线通信
误差矢量幅度(ErrorVectorMagnitude,EVM)是一种用来评估数字通信系统中调制质量的重要指标。EVM衡量的是理想信号与实际接收信号之间的差异,通常用来评估调制质量、信号完整性和接收机性能。EVM的定义在一个数字通信系统中,理想情况下接收到的信号应该精确地落在特定的理想星座点上(比如QAM或PSK星座图)。然而,由于各种现实因素,如噪声、失真、非线性效应和相位误差,接收到的信号可能
- 基于matlab的水下航行器建模与仿真,水下自主航行器(AUV)建模仿真探究.doc
蒙眼说
水下自主航行器(AUV)建模仿真探究水下自主航行器(AUV)建模仿真探究【摘要】本文对鱼雷形状的水下自主航行器的六自由度非线性动态模型的研制作了较为详细的介绍。该动态模型充分考虑了各方面的因素,其中包括静水力学,超重,流体力学,操舵、推进力和力矩等。此外模型还考虑了航行器动力学和环境的影响。【关键词】水下自主航行器;建模;仿真研究1.引言水下自主航行体是一种重要的用于水下勘探的机器人,同时也是用于
- 概率潜在语义分析(Probabilistic Latent Semantic Analysis,PLSA)—无监督学习方法、概率模型、生成模型、共现模型、非线性模型、参数化模型、批量学习
剑海风云
ArtificialIntelligence人工智能机器学习概率潜在语义分析PLSA
定义输入:设单词集合为W={ω1,ω2,⋯ ,ωM}W=\{\omega_1,\omega_2,\cdots,\omega_M\}W={ω1,ω2,⋯,ωM},文本集合为D={d1,d2,⋯ ,dN}D=\{d_1,d_2,\cdots,d_N\}D={d1,d2,⋯,dN},话题集合为Z={z1,z2,⋯ ,zN}Z=\{z_1,z_2,\cdots,z_N\}Z={z1,z2,⋯,zN},共现
- python数学建模--非线性规划
diudiu_aaa
数学建模python算法
1.从线性规划到非线性规划本系列的开篇我们介绍了线性规划(LinearProgramming)并延伸到整数规划、0-1规划,以及相对复杂的固定费用问题、选址问题。这些问题的共同特点是,目标函数与约束条件都是线性函数。如果目标函数或约束条件中包含非线性函数,则是非线性规划。通常,非线性问题都比线性问题复杂得多,困难得多,非线性规划也是这样。非线性规划没有统一的通用方法、算法来解决,各种方法都有特定的
- 数学建模笔记—— 非线性规划
liangbm3
数学建模笔记数学建模笔记pythonmatlab非线性规划算法学习优化问题
数学建模笔记——非线性规划非线性规划1.模型原理1.1非线性规划的标准型1.2非线性规划求解的Matlab函数2.典型例题3.matlab代码求解3.1例1一个简单示例3.2例2选址问题1.第一问线性规划2.第二问非线性规划非线性规划非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈(H.W.Kuhn)和托克(A.W.T
- AdaBoost算法(AdbBoost Algorithm)—有监督学习方法、非概率模型、判别模型、非线性模型、非参数化模型、批量学习
剑海风云
ArtificialIntelligence人工智能机器学习提升方法AdaBoost
定义输入:训练数据集T={(x1,y1),(x2,y2),⋯ ,(xN,yN)}T=\{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\}T={(x1,y1),(x2,y2),⋯,(xN,yN)},其中,xi∈χ⊆Rn,yi∈y={−1,+1}x_i\in\chi\subseteqR^n,y_i\in{\tty}=\{-1,+1\}xi∈χ⊆Rn,yi∈y={−1,+1}
- 共读书籍《反脆弱》的感悟
平台创业者
什么是反脆弱性书中将事物分成三类:脆弱类、强韧类和反脆弱类。脆弱类喜欢安静的稳定的环境,反脆弱类从混乱中成长,强韧的事物不太在意环境.哪些事物具有反脆弱性反脆弱性决定了有生命的有机体或复杂体(比如人体)与无生命的机械体(比如办公桌上的订书机)之间的区别。“任何有生命的物体在一定程度上都具有反脆弱性”人有反脆弱性,人类活动也具有反脆弱性。如何识别反脆弱性作者认为脆弱性源于非线性效应。所以,对于脆弱的
- 深度神经网络详解:原理、架构与应用
阿达C
活动dnn计算机网络人工智能神经网络机器学习深度学习
深度神经网络(DeepNeuralNetwork,DNN)是机器学习领域中最为重要和广泛应用的技术之一。它模仿人脑神经元的结构,通过多层神经元的连接和训练,能够处理复杂的非线性问题。在图像识别、自然语言处理、语音识别等领域,深度神经网络展示了强大的性能。本文将深入解析深度神经网络的基本原理、常见架构及其实际应用。一、深度神经网络的基本原理1.1神经元和感知器神经元是深度神经网络的基本组成单元。一个
- 基于matlab的倒立摆设计,基于MATLAB的倒立摆系统控制系统设计与仿真.doc
LearnAndCode
基于matlab的倒立摆设计
1绪论1.1倒立摆系统简介倒立摆系统是一种很常见的又和人们的生活密切相关的系统,它深刻揭示了自然界一种基本规律,即自然不稳定的被控对象,通过控制手段可使之具有良好的稳定性。倒立摆系统是一个非线性,强耦合,多变量和自然不稳定的系统。它是由沿导轨运动的小车和通过转轴固定在小车上的摆杆组成的。在导轨一端装有用来测量小车位移的电位计,摆体与小车之间由轴承连接,并在连接处安置电位器用来测量摆的角度。小车可沿
- 学习笔记:新媒体运营系统学习(二)
山山而川_Y
本阶段主要学习了新媒体应用传播学和着陆页实战课程。新媒体应用传播学:重点学习了线性传播的线性视角、非线性视角、文化视角、影响力六原则。新媒体着陆页实战:在此门课程中学习了着陆页经典的八大结构:价值定位、行动呼唤、产品特征、信用背书、用户评价、风险承诺、常见问题、终极呼唤。使用“上线了”实操制作着陆页,并且学习了标题写作的DM法公式、落差公式以及人性法则。通过两门课程的学习以及已完成的项目考试,我更
- 基于深度学习的信号滤波:创新技术与应用挑战
逼子歌
深度学习神经网络信号滤波图像去噪卷积神经网络长短期记忆网络
一、引言1.1研究背景随着科技的不断发展,信号处理领域面临着越来越复杂的挑战。在众多信号处理技术中,基于深度学习的信号滤波技术逐渐崭露头角,成为研究的热点。基于深度学习的信号滤波在信号处理领域具有至关重要的地位。如今,我们生活在一个数据爆炸的时代,各种信号源不断产生大量的复杂数据。例如,在通信领域,信号常常受到噪声干扰,传统的滤波方法在处理复杂、非线性信号时可能效果不佳。而深度学习技术具有自动特征
- 数据结构绪论题目
小黄瓜丹斯
数据结构#笔记数据结构数据结构
绪论1.1数据结构的基本概念一、单项选择题1.可以用()定义一个完整的数据结构。A.数据元素B.数据对象C.数据关系D.抽象数据类型【解析】D抽象数据类型可以定义一个完整的数据结构。包括数据元素,数据元素之间的关系,以及可以进行的操作2.以下数据结构中,()是非线性数据结构。A.树B.字符串C.队列D.栈【解析】A知识点是非线性数据结构的定义。A是层次结构,为非线性数据结构;B、C、D均为线性数据
- 终端滑模matlab程序,机器人轨迹跟踪控制方法研究(含MATLAB程序)
得陇而望蜀者
终端滑模matlab程序
机器人轨迹跟踪控制方法研究(含MATLAB程序)(课题申报表,任务书,开题报告,中期检查表,外文翻译,论文15300字,程序,答辩PPT)摘要机器人是一类复杂的、具有不确定性的、多输入多输出非线性时变系统。滑模变结构控制对系统参数和外部扰动等不确定性具有不变性,因此非常适合于机器人的控制。本文主要研究了机器人的滑模轨迹跟踪控制。首先简要介绍机器人轨迹跟踪方法和滑模控制的基本原理,然后着重阐述奇异终
- Python强化学习,基于gym的马尔可夫决策过程MDP,动态规划求解,体现序贯决策
baozouxiaoxian
pythongymqlearningpython强化学习mdp动态规划求解马尔科夫决策过程
决策的过程分为单阶段和多阶段的。单阶段决策也就是单次决策,这个很简单。而序贯决策指按时间序列的发生,按顺序连续不断地作出决策,即多阶段决策,决策是分前后顺序的。序贯决策是前一阶段决策方案的选择,会影响到后一阶段决策方案的选择,后一阶段决策方案的选择是取决于前一阶段决策方案的结果。强化学习过程中最典型的例子就是非线性二级摆系统,有4个关键值,小车受力,受力方向,摆速度,摆角,每个状态下都需要决策车的
- 常用torch.nn
mm_exploration
MyDiffusionpythonpytorch人工智能
目录一、torch.nn和torch.nn.functional二、nn.Linear三、nn.Embedding四、nn.Identity五、Pytorch非线性激活函数六、nn.Conv2d七、nn.Sequential八、nn.ModuleList九、torch.outertorch.cat一、torch.nn和torch.nn.functionalPytorch中torch.nn和torc
- 人工智能与机器学习原理精解【1】
叶绿先锋
基础数学与应用数学神经网络人工智能深度学习
文章目录Rosenblatt感知器感知器基础收敛算法算法概述算法步骤关键点说明总结C++实现要点代码参考文献Rosenblatt感知器感知器基础感知器,也可翻译为感知机,是一种人工神经网络。它可以被视为一种最简单形式的前馈式人工神经网络,是一种二元线性分类器。Rosenblatt感知器建立在一个非线性神经元上,但是它只能完成线性分类硬限幅与超平面局部诱导域v=∑i=1mwixi+b从上面公式看来,
- [Instance Normalization] The Missing Ingredient for Fast Stylization
emergency_rose
paper阅读笔记大数据
BN->IN,能有效提升纹理风格转化任务的图像生成质量1、原因1)生成图像的对比度主要取决于style图像,而非content图像;通过instancenormalization,可以去除content图像的个体对比度差异,从而简化生成过程2)高度非线性的contrastnormalization很难通过CNNblock(包含卷积、池化、上采样、BN等)来实现,因此需要直接在architectur
- 【Test 】五种滤波函数你了解多少呢?
未来可期LJ
opencv人工智能计算机视觉
文章目录1.图像滤波的概念2.方框滤波1.图像滤波的概念尽可能将图像细节特征保留下来,对目标图像的噪声进行抑制。图像中的噪声:随机的亮度或颜色干扰。⚽根据空间滤波特性可分为:线性滤波和非线性滤波。线性滤波:方框滤波、高斯滤波、均值滤波非线性滤波:双边滤波、中值滤波目的:使图像的视觉效果更好,不能破坏图像轮廓和边缘。2.方框滤波官方文档链接代码#include#includeusingnamespa
- 2024国赛数学建模备战-数学建模思想方法大全及方法适用范围
V建模忠哥V
2024国赛数学建模
第一篇:方法适用范围一、统计学方法1.1多元回归1、方法概述:在研究变量之间的相互影响关系模型时候,用到这类方法,具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。2、分类分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx可以转化为y=uu=lnx来解决;
- 深度学习的发展历程
木亦汐丫
技术摘抄深度学习人工智能感知机反向传播梯度下降神经网络
深度学习的起源在机器学习中,我们经常使用两种方式来表示特征:局部表示(LocalRepresentation)和分布式表示(DistributedRepresentation)。以颜色表示为例,见下图:要学习到一种好的高层语义表示(一般为分布式表示),通常需要从底层特征开始,经过多步非线性转换才能得到。深层结构的优点是可以增加特征的重用性,从而指数级地增加表示能力。因此,表示学习的关键是构建具有一
- 深度学习入门:使用 PyTorch 构建和训练你的第一个神经网络
Mr' 郑
深度学习pytorch神经网络
引言深度学习是机器学习的一个分支,它利用多层非线性处理单元(即神经网络)来解决复杂的模式识别问题。PyTorch是一个强大的深度学习框架,它提供了灵活的API和动态计算图,非常适合初学者和研究者使用。安装PyTorch确保安装了Python和pip。然后通过以下命令安装PyTorch:pipinstalltorchtorchvision导入库我们需要导入一些必要的库:importtorchimpo
- Value Iteration Adaptive Dynamic Programming for Optimal Control of Discrete-Time Nonlinear Systems
LucienLSA
学习笔记
ValueIterationAdaptiveDynamicProgrammingforOptimalControlofDiscrete-TimeNonlinearSystems,2016.QinglaiWei,Member,IEEE,DerongLiu,Fellow,IEEE,andHanquanLin对离散时间非线性系统,采用值迭代ADP算法,求解无限时域无折扣因子最优控制问题。初始值函数为任意
- 学习笔记:我的新媒体运营进阶之路(二)
山山而川_Y
进入到学习的第二阶段,有了前面的导论铺垫后,可以说是渐渐进入了学习状态。工作日每天晚上八点准时开启学习,根据当日任务和学习状态灵活调整学习时间。本阶段主要学习了新媒体应用传播学和着陆页实战课程。新媒体应用传播学:重点学习了线性传播的线性视角、非线性视角、文化视角、影响力六原则。新媒体着陆页实战:在此门课程中学习了着陆页经典的八大结构:价值定位、行动呼唤、产品特征、信用背书、用户评价、风险承诺、常见
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag