- 灾难性遗忘问题(Catastrophic Forgetting,CF)是什么?
Chauvin912
机器学习算法科普学习方法
灾难性遗忘问题(CatastrophicForgetting,CF)是什么?在深度学习和人工智能领域中,“灾难性遗忘”(CatastrophicForgetting)是指当神经网络在增量学习(IncrementalLearning)或持续学习(ContinualLearning)过程中遇到新任务时,往往会显著遗忘之前所学的任务知识。这种现象在需要模型长期积累知识的应用场景中尤为显著,如自动驾驶、机
- 机器学习中的增量学习(Incremental Learning,IL)策略是什么?
Chauvin912
机器学习算法科普机器学习学习人工智能
机器学习中的增量学习(IncrementalLearning,IL)策略是什么?在当今快速发展的数据驱动世界中,传统的静态机器学习模型逐渐显露出局限性。随着数据量的增长和分布的变化,模型需要不断更新,以保持其预测能力和适应性。然而,频繁的重新训练不仅耗费大量资源,还会导致模型丧失对旧数据的记忆,这被称为“灾难性遗忘”(CatastrophicForgetting)现象。为解决这一问题,增量学习(I
- 机器学习概述与应用:深度学习、人工智能与经典学习方法
刷刷刷粉刷匠
人工智能机器学习深度学习
引言机器学习(MachineLearning)是人工智能(AI)领域中最为核心的分支之一,其主要目的是通过数据学习和构建模型,帮助计算机系统自动完成特定任务。随着深度学习(DeepLearning)的崛起,机器学习技术在各行各业中的应用变得越来越广泛。在本文中,我们将详细介绍机器学习的基础概念,包括无监督学习、有监督学习、增量学习,以及常见的回归和分类问题,并结合实际代码示例来加深理解。1.机器学
- 如何利用增量学习的方法来解决灾难性遗忘的问题?
AlphaFinance
机器学习学习机器学习深度学习
增量学习是一种逐步学习新数据的方法,通过在新数据上更新模型而不是从头开始训练。这种方法在很大程度上可以缓解灾难性遗忘问题,因为它试图在学习新知识的同时保留已有知识。以下是一些使用增量学习解决灾难性遗忘问题的策略:记忆回放:记忆回放是一种常用的解决灾难性遗忘问题的方法。它通过存储一些先前学习过的样本,并在训练新数据时将这些样本与新数据混合,从而使模型能够回顾并巩固已学习的知识。这有助于在学习新任务时
- Obsidian与SuperMemo联用(四)
来自知乎的一只小胖子
在之前系列文章中,我有讲解了SuperMemo在学习场景中与其它软件协同的操作流程,包括如何在SuperMemo中导入Obsidian笔记进行增量学习的具体操作。很快几个月过去了,通过对Obsidian软件这段时间的使用和学习,我现在对两个软件的结合使用又有了一些新的想法,因此便有了此文。如果你还未阅读原文,可参考如下原文链接,来了解SuperMemo在学习中的协同使用流程:一只小胖子:Super
- 增量学习时,通过网络快速搜索关键词的快捷键是什么?
菜五
(2019-02-02-周六04:55:05)Ctrl+f3要快速搜索有关您正在阅读的主题的文章,请选择文本的一部分,按Ctrl+F3并选择谷歌
- 深度学习笔记:灾难性遗忘
UQI-LIUWJ
机器学习笔记
1灾难性遗忘介绍当神经网络被训练去学习新的任务时,它可能会完全忘记如何执行它以前学过的任务。这种现象尤其在所谓的“连续学习”(continuouslearning)或“增量学习”(incrementallearning)场景中很常见2不同视角下看待灾难性遗忘以及对应的解决方法2.1从梯度的视角2.1.1从梯度的视角看灾难性遗忘我们有两个不同任务的损失曲面,用平滑的曲面训练完之后,再在坑坑洼洼的曲面
- incremental learning(增量学习是什么意思)
:)�东东要拼命
CV基础知识1024程序员节机器学习人工智能目标检测deeplearning
有时候真的从ai的理解反复横跳,从一个不明觉厉ai的概念的小白到初识neuralnetwork的科研菜鸡。概念上跟着吴恩达大佬刷新了一下,其实只是看上去nn和大脑神经相似而已,本质上就是让机器给我们一个函数,一个“黑盒”,输进去data,出来我们想要的结果。增量学习(incrementallearning)从某种角度来说,有点契合我们人类持续不断地学习的状态,我们永远鼓励大家接受新事物,学习新知识
- Continual Learning/Lifelong Learning/Incremental Learning
Si_ang_
深度学习神经网络人工智能
一、浅谈持续学习持续学习(ContinualLearning)又叫终身学习(LifelongLearning)又叫增量学习(IncrementalLearning)。增量学习是可取的,因为它允许通过消除新数据到达时从头再训练的需要来有效地使用资源;通过防止或限制所需存储的数据量来减少内存使用,在施加隐私限制时也很重要;学习更接近于人类的学习。近年来,深度神经网络的增量学习出现了爆炸式增长。最初的工
- 连续学习(Continual Learning)或者增量学习的场景中,multiband和replay分别是什么?起到什么作用
马鹏森
机器学习基础学习
multiband和replay是两种不同的训练策略,通常用在处理连续学习或者增量学习的场景中。这些策略旨在解决新知识学习导致旧知识遗忘的问题,即所谓的灾难性遗忘。以下是multiband和replay两种策略的基本区别:Multiband:定义:multiband通常是指一种训练过程,其中模型被设计为可以同时学习和保持对多个任务或数据集的知识(同时学习新旧知识)。这种方法的目标是在整个训练过程中
- IJCAI2023 | 高效训练Transformers的方法
JOYCE_Leo16
Transformer深度学习transformer人工智能计算机视觉
来源:Google数据科学文章目录前言一、ComputationEffciency1.Optimization(优化器)2.Initialization(参数初始化)3.Sparsetraining(稀疏训练)4.Overparameterization(过参数化)5.Largebatchtraining(大批量训练)6.Incrementallearning(增量学习)二、DataSelecti
- 2024年原创深度学习算法项目分享
Jason160918
python机器学习目标检测人工智能自然语言处理计算机视觉
原创深度学习算法项目分享,包括以下领域:图像视频、文本分析、知识图谱、推荐系统、问答系统、强化学习、机器学习、多模态、系统界面、爬虫、增量学习等领域…有需要的话,评论区私聊
- SuperMemo16有一小篇幅的文章,因它整合在“增量学习”内,所以不受人欢迎。 “增量学习”这篇文章,其篇幅之长,可当一本书来对待。
菜五
(2018-05-16-周三00:15:52)SuperMemo16有一篇短小的文章,但它不受欢迎,它与“增量学习”的文章结合在一起,这篇文章读起来就像一本小书(由于篇幅太长)。
- 除了items、主题和概念之外,您还可以在增量学习中使用任务。
菜五
(2018-11-19-周一15:41:42)除了items、主题和概念之外,您还可以在增量学习中使用任务。
- 近日思考()
坠金
目标识别/语义分割计算机视觉
科研过程的一些小思考,多半是自己还没能力实现的,如果有路过的大佬知道这些问题有解决的思路,请给我一点关键词,验证可行的请你喝咖啡~Q1:cv任务是否可以分阶段学习?类似婴儿有一定的多分类能力,但没见过苹果,给它新数据集但是只标签只有背景和苹果(可能包含以前见过的类别,但标记为背景)增量学习(IncrementalLearning)或继续学习(ContinualLearning)?对这块不太了解,查
- 63基于matlab的生物地理的优化器(BBO)被用作多层感知器(MLP)的训练器。
顶呱呱程序
matlab工程应用matlab学习人工智能多种优化算法比较模式识别
基于matlab的生物地理的优化器(BBO)被用作多层感知器(MLP)的训练器。粒子群优化(PSO)、蚁群优化(ACO)、遗传算法(GA)、进化策略(ES)和基于概率的增量学习(PBIL)。计算了BBO-MLP、PSO、ACO、ES、GA和PBIL的分类精度并相互比较。输出每种算法的收敛曲线和分类精度。程序已调通,可直接运行。63模式识别多种优化算法比较(xiaohongshu.com)
- 《机器学习实战》1章-机器学习概览
一只勤劳的小鸡
机器学习人工智能机器学习
前言: 本文是对蜥蜴书第二版第一章学习概要。一、什么是机器学习利用经验E来学习任务T,性能是P,如果针对任务T的性能P随着经验E不断增长,则称为机器学习。-TomMitchell二、机器学习分类Ⅰ、按照是否有监督有监督学习有标签无监督学习无标签半监督学习部分有标签强化学习有奖惩。Ⅱ、按照是否动态增量学习(持续学习)在线学习不良的数据可能会使系统性能降低。批量学习Ⅲ、按研究对象基于实例学习基于模型学
- 【论文翻译】Faster ILOD:Incremental Learning for Object Detectors based on Faster RCNN
小张好难瘦
论文目标检测人工智能计算机视觉
FasterILOD:IncrementalLearningforObjectDetectorsbasedonFasterRCNNFasterILOD:基于FasterRCNN的目标检测器增量学习论文地址:https://arxiv.org/pdf/2003.03901.pdf代码地址:无目录Abstract1Introduction2ProblemFormulation3RelatedWork3
- 读书笔记-增量学习-EEIL_End-to-End Incremental Learning
谷粤狐
读书笔记机器学习人工智能深度学习神经网络计算机视觉
一篇2018年的论文:End-to-EndIncrementalLearning。为了使模型实现增量学习,把新、旧数据一起重新训练会导致时间、存储成本等一系列问题。作者提出的方法仅使用新数据与部分代表性的旧数据。基于Distillation知识蒸馏从旧数据中提取代表性样本、Crossentropy交叉熵学习新数据。题目的End-to-End指的是能同时训练更新Classification分类器和代
- 联邦类增量学习
王洛伊
学习
FCIL联邦类增量学习已经参与联邦学习的用户经常可能收到新的类别,但是考虑到每个用户自己设备的存储空间有限,很难对其收集到的所有类别都保存下足够数量的数据。这种情况会导致联邦学习模型对于旧类数据的性能遇到严重的灾难性遗忘。全局-局部遗忘补偿(GLFC)模型,同时从global和local俩个角度出发,尽可能的减弱灾难性遗忘,使联邦学习最终可训练一个全局增量模型。为了解决由于localclient的
- 增量学习分享
cqbelt
日记学习机器学习深度学习
增量学习主要应用于判别性任务。在这个场景中,分类任务是按顺序学习的。在序列的最后,判别模型应该能够记住所有的任务。从一个任务到下一个任务的简单的微调方法会导致灾难性遗忘,也就是说,无法在之前的任务上保持初始性能。之前提出的方法可以分为四种类型。第一种方法,称为排练,是保留以前任务的样本。这些样本可以用不同的方式来克服遗忘。该方法不能用于以前任务的数据不可用的场景。此外,这种方法的可扩展也会受到质疑
- sklearn 增量学习
吹洞箫饮酒杏花下
对于大数据集,在训练时会出现MemoryError。sklearn提供了几种办法,一是从根本上节省空间,二是流式读取,三是节省每次运行时的数据量。1.流式数据要给算法流式数据或小batch的数据。读入数据的一部分?2.特征提取或者降维sklearn提供了很多方法。3.增量学习算法sklearn中任何提供了partial_fit的函数的学习器都可以进行增量学习。运行数据的一部分。每次训练只有一个mi
- 【知识点】增量学习、在线学习、离线学习的区别
风等雨归期
学习
参考链接:https://www.6aiq.com/article/1613258706447?p=1&m=0离线学习常见的学习方式,一次性将所有数据参与进训练。离线学习完成了目标函数的优化将不会在改变了离线学习需要一次提供整个训练集时间和空间成本效率低发生数据变更或模型漂移需要从头开始训练离线学习模型稳定性高,方便做模型的验证评估在线学习在线学习,能够根据线上反馈数据,实时快速地进行模型调整,使
- 超越传统学习:揭秘增量学习的优势与挑战
机器学习深度学习
增量学习代表了学术界的一种动态方法,促进逐步和一致的知识同化。与向学习者提供海量信息的传统方法不同,增量学习将复杂的主题分解为可管理的片段。在机器学习中,增量方法训练人工智能模型逐步吸收新知识。这使模型能够保留并增强现有的理解,形成持续进步的基石。什么是增量学习?增量学习是一种教育方法,通过以可管理的小增量引入新数据,多年来逐渐积累知识。增量学习不是试图立即学习所有内容,而是将复杂的主题分解为更小
- yolo中迁移学习和增量学习的区别是什么,适用于什么情况
小镇种田家
yoloYOLO迁移学习学习深度学习
在YOLO中,迁移学习和增量学习是两种不同的训练策略,它们有着不同的应用场景和目的。1.迁移学习(TransferLearning):迁移学习是指将在一个任务上训练好的模型应用于另一个相关任务上。在YOLO中,迁移学习可以通过将在大规模数据集(如COCO数据集)上预训练的模型作为初始模型,然后在目标数据集(如自己的数据集)上进行微调训练。这样做的好处是,可以快速将模型适应到新数据集,从而节省训练时
- Unsupervised Recognition of Unknown Objects for Open-World Object Detection(论文解析)
黄阳老师
目标检测目标跟踪人工智能
UnsupervisedRecognitionofUnknownObjectsforOpen-WorldObjectDetection摘要2相关工作摘要开放世界目标检测(OWOD)将目标检测问题扩展到一个现实且动态的场景,要求检测模型能够检测已知和未知对象,并能够增量学习新引入的知识。当前的OWOD模型,如ORE和OW-DETR,侧重于将具有高物体性分数的区域标记为未知对象,它们的性能在很大程度上
- PROB: Probabilistic Objectness for Open World Object Detection(论文解析)
黄阳老师
目标检测人工智能计算机视觉
PROB:ProbabilisticObjectnessforOpenWorldObjectDetection摘要2相关工作摘要开放世界目标检测(OWOD)是一个新的、具有挑战性的计算机视觉任务,它弥合了传统的目标检测(OD)基准和现实世界中的目标检测之间的差距。除了检测和分类已知/标记的对象外,OWOD算法还应该能够检测新颖/未知的对象,这些对象可以进行分类和增量学习。在标准的OD中,不与已标记
- 【增量学习】Incremental Intent Detection for Medical Domainwith Contrastive Replay Networks
nlp_xiaobai
学习自然语言处理tensorflow深度学习机器学习
这篇2022年5月份的ACL文章出自于中科院Abstract传统的医疗意图检测方法需要固定的预定义意图类别。然而,由于现实世界中新的医学意图不断涌现,这样的要求并不现实。考虑到每次新数据和意图进入时存储和重新训练整个数据的计算成本很高,我们建议增量学习出现的意图,同时避免灾难性地忘记旧意图。我们首先为医疗意图检测制定增量学习。然后,我们采用基于记忆的方法来处理增量学习。我们进一步建议使用对比重放网
- 《A Survey of Model Compression and Acceleration for Deep Neural Networks》笔记
luyanfcp
Introduce随着DNN的层数和节点个数越来越多,它面临着两方面的问题。一方面它的计算和存储成本越来越高,对一些及时性的程序带来了挑战(在线学习和增量学习);另一方面由于小型化设备越来越普及,小型设备对DNN越来越强。但由于体积和计算难度,DNN在小型设备上的部署也面临挑战。本文综述了最近几年ML、最优化、计算机体系结构、数据压缩、硬件设计等等方面对DNN加速和压缩方面的进展。本文讲这些进展分
- 机器学习的种类介绍
statr
现有的机器学习种类繁多,我们一般可以进行如下的分类标准:是否在人类监督下学习(监督学习、非监督学习、半监督学习和强化学习)是否可以动态的增量学习(在线学习和批量学习)是简单的将新的数据点和已知的数据点进行匹配,还是像科学家那样对训练数据进行模型检测,然后建立一个预测模型(基于实例的学习和基于模型的学习)这些标准之间并不排斥。一、监督学习和非监督学习根据训练期间接受的监督数量和监督类型,可以将机器学
- html
周华华
html
js
1,数组的排列
var arr=[1,4,234,43,52,];
for(var x=0;x<arr.length;x++){
for(var y=x-1;y<arr.length;y++){
if(arr[x]<arr[y]){
&
- 【Struts2 四】Struts2拦截器
bit1129
struts2拦截器
Struts2框架是基于拦截器实现的,可以对某个Action进行拦截,然后某些逻辑处理,拦截器相当于AOP里面的环绕通知,即在Action方法的执行之前和之后根据需要添加相应的逻辑。事实上,即使struts.xml没有任何关于拦截器的配置,Struts2也会为我们添加一组默认的拦截器,最常见的是,请求参数自动绑定到Action对应的字段上。
Struts2中自定义拦截器的步骤是:
- make:cc 命令未找到解决方法
daizj
linux命令未知make cc
安装rz sz程序时,报下面错误:
[root@slave2 src]# make posix
cc -O -DPOSIX -DMD=2 rz.c -o rz
make: cc:命令未找到
make: *** [posix] 错误 127
系统:centos 6.6
环境:虚拟机
错误原因:系统未安装gcc,这个是由于在安
- Oracle之Job应用
周凡杨
oracle job
最近写服务,服务上线后,需要写一个定时执行的SQL脚本,清理并更新数据库表里的数据,应用到了Oracle 的 Job的相关知识。在此总结一下。
一:查看相关job信息
1、相关视图
dba_jobs
all_jobs
user_jobs
dba_jobs_running 包含正在运行
- 多线程机制
朱辉辉33
多线程
转至http://blog.csdn.net/lj70024/archive/2010/04/06/5455790.aspx
程序、进程和线程:
程序是一段静态的代码,它是应用程序执行的蓝本。进程是程序的一次动态执行过程,它对应了从代码加载、执行至执行完毕的一个完整过程,这个过程也是进程本身从产生、发展至消亡的过程。线程是比进程更小的单位,一个进程执行过程中可以产生多个线程,每个线程有自身的
- web报表工具FineReport使用中遇到的常见报错及解决办法(一)
老A不折腾
web报表finereportjava报表报表工具
FineReport使用中遇到的常见报错及解决办法(一)
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、address pool is full:
含义:地址池满,连接数超过并发数上
- mysql rpm安装后没有my.cnf
林鹤霄
没有my.cnf
Linux下用rpm包安装的MySQL是不会安装/etc/my.cnf文件的,
至于为什么没有这个文件而MySQL却也能正常启动和作用,在这儿有两个说法,
第一种说法,my.cnf只是MySQL启动时的一个参数文件,可以没有它,这时MySQL会用内置的默认参数启动,
第二种说法,MySQL在启动时自动使用/usr/share/mysql目录下的my-medium.cnf文件,这种说法仅限于r
- Kindle Fire HDX root并安装谷歌服务框架之后仍无法登陆谷歌账号的问题
aigo
root
原文:http://kindlefireforkid.com/how-to-setup-a-google-account-on-amazon-fire-tablet/
Step 4: Run ADB command from your PC
On the PC, you need install Amazon Fire ADB driver and instal
- javascript 中var提升的典型实例
alxw4616
JavaScript
// 刚刚在书上看到的一个小问题,很有意思.大家一起思考下吧
myname = 'global';
var fn = function () {
console.log(myname); // undefined
var myname = 'local';
console.log(myname); // local
};
fn()
// 上述代码实际上等同于以下代码
m
- 定时器和获取时间的使用
百合不是茶
时间的转换定时器
定时器:定时创建任务在游戏设计的时候用的比较多
Timer();定时器
TImerTask();Timer的子类 由 Timer 安排为一次执行或重复执行的任务。
定时器类Timer在java.util包中。使用时,先实例化,然后使用实例的schedule(TimerTask task, long delay)方法,设定
- JDK1.5 Queue
bijian1013
javathreadjava多线程Queue
JDK1.5 Queue
LinkedList:
LinkedList不是同步的。如果多个线程同时访问列表,而其中至少一个线程从结构上修改了该列表,则它必须 保持外部同步。(结构修改指添加或删除一个或多个元素的任何操作;仅设置元素的值不是结构修改。)这一般通过对自然封装该列表的对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedList 方
- http认证原理和https
bijian1013
httphttps
一.基础介绍
在URL前加https://前缀表明是用SSL加密的。 你的电脑与服务器之间收发的信息传输将更加安全。
Web服务器启用SSL需要获得一个服务器证书并将该证书与要使用SSL的服务器绑定。
http和https使用的是完全不同的连接方式,用的端口也不一样,前者是80,后
- 【Java范型五】范型继承
bit1129
java
定义如下一个抽象的范型类,其中定义了两个范型参数,T1,T2
package com.tom.lang.generics;
public abstract class SuperGenerics<T1, T2> {
private T1 t1;
private T2 t2;
public abstract void doIt(T
- 【Nginx六】nginx.conf常用指令(Directive)
bit1129
Directive
1. worker_processes 8;
表示Nginx将启动8个工作者进程,通过ps -ef|grep nginx,会发现有8个Nginx Worker Process在运行
nobody 53879 118449 0 Apr22 ? 00:26:15 nginx: worker process
- lua 遍历Header头部
ronin47
lua header 遍历
local headers = ngx.req.get_headers()
ngx.say("headers begin", "<br/>")
ngx.say("Host : ", he
- java-32.通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小(两数组的差最小)。
bylijinnan
java
import java.util.Arrays;
public class MinSumASumB {
/**
* Q32.有两个序列a,b,大小都为n,序列元素的值任意整数,无序.
*
* 要求:通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小。
* 例如:
* int[] a = {100,99,98,1,2,3
- redis
开窍的石头
redis
在redis的redis.conf配置文件中找到# requirepass foobared
把它替换成requirepass 12356789 后边的12356789就是你的密码
打开redis客户端输入config get requirepass
返回
redis 127.0.0.1:6379> config get requirepass
1) "require
- [JAVA图像与图形]现有的GPU架构支持JAVA语言吗?
comsci
java语言
无论是opengl还是cuda,都是建立在C语言体系架构基础上的,在未来,图像图形处理业务快速发展,相关领域市场不断扩大的情况下,我们JAVA语言系统怎么从这么庞大,且还在不断扩大的市场上分到一块蛋糕,是值得每个JAVAER认真思考和行动的事情
- 安装ubuntu14.04登录后花屏了怎么办
cuiyadll
ubuntu
这个情况,一般属于显卡驱动问题。
可以先尝试安装显卡的官方闭源驱动。
按键盘三个键:CTRL + ALT + F1
进入终端,输入用户名和密码登录终端:
安装amd的显卡驱动
sudo
apt-get
install
fglrx
安装nvidia显卡驱动
sudo
ap
- SSL 与 数字证书 的基本概念和工作原理
darrenzhu
加密ssl证书密钥签名
SSL 与 数字证书 的基本概念和工作原理
http://www.linuxde.net/2012/03/8301.html
SSL握手协议的目的是或最终结果是让客户端和服务器拥有一个共同的密钥,握手协议本身是基于非对称加密机制的,之后就使用共同的密钥基于对称加密机制进行信息交换。
http://www.ibm.com/developerworks/cn/webspher
- Ubuntu设置ip的步骤
dcj3sjt126com
ubuntu
在单位的一台机器完全装了Ubuntu Server,但回家只能在XP上VM一个,装的时候网卡是DHCP的,用ifconfig查了一下ip是192.168.92.128,可以ping通。
转载不是错:
Ubuntu命令行修改网络配置方法
/etc/network/interfaces打开后里面可设置DHCP或手动设置静态ip。前面auto eth0,让网卡开机自动挂载.
1. 以D
- php包管理工具推荐
dcj3sjt126com
PHPComposer
http://www.phpcomposer.com/
Composer是 PHP 用来管理依赖(dependency)关系的工具。你可以在自己的项目中声明所依赖的外部工具库(libraries),Composer 会帮你安装这些依赖的库文件。
中文文档
入门指南
下载
安装包列表
Composer 中国镜像
- Gson使用四(TypeAdapter)
eksliang
jsongsonGson自定义转换器gsonTypeAdapter
转载请出自出处:http://eksliang.iteye.com/blog/2175595 一.概述
Gson的TypeAapter可以理解成自定义序列化和返序列化 二、应用场景举例
例如我们通常去注册时(那些外国网站),会让我们输入firstName,lastName,但是转到我们都
- JQM控件之Navbar和Tabs
gundumw100
htmlxmlcss
在JQM中使用导航栏Navbar是简单的。
只需要将data-role="navbar"赋给div即可:
<div data-role="navbar">
<ul>
<li><a href="#" class="ui-btn-active&qu
- 利用归并排序算法对大文件进行排序
iwindyforest
java归并排序大文件分治法Merge sort
归并排序算法介绍,请参照Wikipeida
zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F
基本思想:
大文件分割成行数相等的两个子文件,递归(归并排序)两个子文件,直到递归到分割成的子文件低于限制行数
低于限制行数的子文件直接排序
两个排序好的子文件归并到父文件
直到最后所有排序好的父文件归并到输入
- iOS UIWebView URL拦截
啸笑天
UIWebView
本文译者:candeladiao,原文:URL filtering for UIWebView on the iPhone说明:译者在做app开发时,因为页面的javascript文件比较大导致加载速度很慢,所以想把javascript文件打包在app里,当UIWebView需要加载该脚本时就从app本地读取,但UIWebView并不支持加载本地资源。最后从下文中找到了解决方法,第一次翻译,难免有
- 索引的碎片整理SQL语句
macroli
sql
SET NOCOUNT ON
DECLARE @tablename VARCHAR (128)
DECLARE @execstr VARCHAR (255)
DECLARE @objectid INT
DECLARE @indexid INT
DECLARE @frag DECIMAL
DECLARE @maxfrag DECIMAL
--设置最大允许的碎片数量,超过则对索引进行碎片
- Angularjs同步操作http请求with $promise
qiaolevip
每天进步一点点学习永无止境AngularJS纵观千象
// Define a factory
app.factory('profilePromise', ['$q', 'AccountService', function($q, AccountService) {
var deferred = $q.defer();
AccountService.getProfile().then(function(res) {
- hibernate联合查询问题
sxj19881213
sqlHibernateHQL联合查询
最近在用hibernate做项目,遇到了联合查询的问题,以及联合查询中的N+1问题。
针对无外键关联的联合查询,我做了HQL和SQL的实验,希望能帮助到大家。(我使用的版本是hibernate3.3.2)
1 几个常识:
(1)hql中的几种join查询,只有在外键关联、并且作了相应配置时才能使用。
(2)hql的默认查询策略,在进行联合查询时,会产
- struts2.xml
wuai
struts
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache