- AI自动采集教学行为——用AI来做机器学习部分和深度学习部分(含torch和cuda)包含机器学习模型和bert模型的使用
东方-教育技术博主
人工智能应用人工智能机器学习深度学习
文章目录数据清洗机器学习深度学习代码没问题之后的文件下载bert环境配置太麻烦,改用飞浆的bert飞浆失败-接着bert,用谷歌AIbert的使用数据清洗要遍历当前文件夹下从1.x1sx到8.x1sx的所有文件,提取“句子”列,‘标注’列和‘上下文情境’这三列按顺序把excel中的这三列拼接在一起。合并输出成一个xlsx文件。importosimportpandasaspd#获取当前脚本所在的目录
- 【机器学习 & 深度学习】开发工具Anaconda的安装与使用
为梦而生~
机器学习python实战机器学习深度学习pythoncondapycharm人工智能
个人主页:为梦而生~关注我一起学习吧!专栏:机器学习:相对完整的机器学习基础教学!机器学习python实战:用python带你感受真实的机器学习深度学习:现代人工智能的主流技术介绍往期推荐:【机器学习&深度学习】神经网络简述【机器学习&深度学习】卷积神经网络学习笔记【Python基础&机器学习】Python环境搭建(适合新手阅读的超详细教程)文章目录前言安装Anaconda关于Anaconda的介
- 机器学习笔记(3.1)
临渊——摸鱼
算法数学建模机器学习python数据挖掘
机器学习笔记系列文章目录文章目录机器学习笔记系列文章目录第三节标准库第三方库基础模块机器学习深度学习平台使用pip安装扩展包常用镜像源什么是Anaconda为什么要用Anaconda如何使用Anaconda第四节思想问题1.避免对业务的轻视2.明白可以为和不可以为业务背景与目标把握数据1.是否有数据2.有多少数据3.是什么样的数据4.标签总结第五节找到数据数据探索数据清洗1.缺失值的处理2.异常值
- 【Python基础 & 机器学习】Python环境搭建(适合新手阅读的超详细教程)
为梦而生~
机器学习python实战python机器学习开发语言人工智能数据挖掘pycharm
个人主页:为梦而生~关注我一起学习吧!重要专栏:机器学习:相对完整的机器学习基础教学!机器学习python实战:用python带你感受真实的机器学习深度学习:现代人工智能的主流技术介绍python网络爬虫从基础到实战:Python的主流应用领域之一,也可以与人工智能领域相结合的技术往期推荐:【机器学习&深度学习】神经网络简述【机器学习&深度学习】卷积神经网络简述【python爬虫开发实战&情感分析
- AI绘画探索人工智能的未来
Aileen_0v0
科技探索AI作画人工智能开源动画图形渲染游戏美术硬件架构
个人主页:Aileen_0v0热门专栏:华为鸿蒙系统学习|计算机网络|数据结构与算法个人格言:“没有罗马,那就自己创造罗马~”accusesbofsth.控告文章目录`AI绘画``前言``Al的应用领域`机器学习深度学习自然语言处理计算机视觉AI与大数据,云计算结合AIGC`Al绘画简介`游戏开发动漫图片制作广告设计艺术创作教育培训工业设计宠物行业AI绘画前言Al的发展可以追溯到20世纪50年代,
- 计算机设计大赛 垃圾邮件(短信)分类算法实现 机器学习 深度学习
iuerfee
python
文章目录0前言2垃圾短信/邮件分类算法原理2.1常用的分类器-贝叶斯分类器3数据集介绍4数据预处理5特征提取6训练分类器7综合测试结果8其他模型方法9最后0前言优质竞赛项目系列,今天要分享的是垃圾邮件(短信)分类算法实现机器学习深度学习该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分更多资料,项目分享:https:
- 计算机毕业设计选题参考 算法方向机器学习深度学习预测(博文底部xv获取)
mqdlff_python
课程设计算法机器学习毕业设计计算机毕设
基于深度学习的农业病虫害识别基于U-Net模型的细胞图像分割检测基于bert的旅游文本情感分析研究基于bert的经济文本情感分析基于PythonOpenCV的车牌定位追踪识别系统医学图像识别:基于卷积神经网络的病癌细胞识别基于word2vec+textcnn的微博评论情感分析研究基于线性回归XGBoost+LRGBDT+LR的信用卡用户逾期行为预测基于卷积神经网络的评论情感分析系统GUI界面基于b
- 【深度学习】初识深度学习
wmh1024
深度学习人工智能
初识深度学习什么是深度学习关系:人工智能机器学习深度学习卷积神经网络深度学习和机器学习的关系:机器学习:随着数据量增加会改进性能的算法深度学习:使用多层神经网络学习。深度学习是机器学习的子集。传统系统和深度学习的区别:传统编程系统:定义规则,输入数据获取输出(定义f(x)、x求得y)深度学习系统:输入答案和数据,输出规则(定义x、y求得f(x),且f(x)具有泛化性)规则f(x)规则f(x)数据x
- Python数据分析案例37——基于分位数神经网络(QRNN)的汇率预测
阡之尘埃
Python数据分析案例python神经网络深度学习概率密度估计汇率预测
案例背景我导师的研究方向是少有的做"分位数回归"方向,作为研究机器学习深度学习方向的我自然就继承了这个特色,改进出了很多特殊结合方法,我会结合各种机器学习方法和各种分位数回归的方法。之前写过分位数随机森林,分位数XGboost,分位数Lightgbm的文章:Xgboost和Lightgbm结合分位数回归(机器学习与传统统计学结合)本次带来一个小案例,分位数神经网络,神经网络是最简单的MLP架构,也
- 李宏毅机器学习-PCA
Zhuanshan_
机器学习人工智能
视频链接:李宏毅2020机器学习深度学习(完整版)国语用最直观的方式告诉你:什么是主成分分析PCA【中字】主成分分析法(PCA)|分步步骤解析看完你就懂了!无监督学习做什么无监督学习主要做两件事情:聚类&降维:比如说下图的树木,只有输入图片,没有标签,我们希望通过一个函数抽象的表达他们,于是抽出一个更抽象的表述生成器:也就是无中生有,我们有很多图片,但不知道是怎么生成的,于是需要一个好的函数,将刚
- 机器学习 -- k近邻算法
北堂飘霜
AIpython机器学习近邻算法人工智能
场景我学习Python的初衷是学习人工智能,满足现有的业务场景。所以必须要看看机器学习这一块。今天看了很久,做个总结。机器学习分为深度学习和传统机器学习深度学习深度学习模型通常非常复杂,包含多层神经网络,每一层都包含大量的神经元(节点)。这些模型可以包含数百万甚至数十亿个参数。深度学习模型可以自动学习数据的特征表示,而无需手动设计特征。通过多层神经网络,深度学习模型可以逐层提取和组合特征,从而更好
- 阿里云服务器可以做什么?阿里云服务器十大应用场景
gla2018
阿里云服务器阿里云服务器云计算
阿里云服务器可以干什么?服务器的用途有很多,常见的有网站、小程序、视频服务器、手机APP等,例如微信基于腾讯云服务器,淘宝基于阿里云服务器,阿里云百科来说下阿里云服务器十大用途:阿里云服务器十大使用场景阿里云服务器可以干嘛?有什么用途?搭建网站需要服务器、手机APP需要服务器支撑、小程序需要服务器、数据库运行在服务器上、机器学习深度学习需要GPU服务器、运行Python爬虫需要服务器支撑、短视频流
- 2023/12 拜个师傅带你学算法写论文
AI研习星球
算法学习和辅导论文历程算法人工智能数据挖掘算法辅导论文辅导神经网络深度学习
文章目录1.自我介绍2.你是否遇到如下问题3.解决方案4.Tips5.同学的学习历程(每日更新)2023/12/222023/12/212023/12/202023/12/192023/12/18关注公众号:『AI学习星球』算法学习、4对1辅导、论文辅导或核心期刊可以通过公众号或CSDN滴滴我1.自我介绍本人是985大学计算机硕士毕业,已经工作了8年。在国内大厂工作,目前仍奋战在机器学习深度学习一
- 人工智能-机器学习-深度学习 概念整理
洛杉矶县牛肉板面
深度学习机器学习深度学习人工智能
目录1.人工智能-ArtificialIntelligence2.机器学习-MachineLearning3.深度学习-DeepLearning4.人工智能机器学习深度学习三者之间的关系5.人工智能的流派6.特征工程-FeatureEngineering7.表示学习8.贡献度分配9.独热码10.word2vec11.神经网络12.端到端学习1.人工智能-ArtificialIntelligence
- 机器学习深度学习代码逐行解读网站
IT北辰
机器学习机器学习深度学习人工智能
机器学习深度学习代码逐行解读网站github地址:https://github.com/labmlai/annotated_deep_learning_paper_implementations视化网站:https://nn.labml.ai/
- 大创项目推荐 垃圾邮件(短信)分类算法实现 机器学习 深度学习
laafeer
python
文章目录0前言2垃圾短信/邮件分类算法原理2.1常用的分类器-贝叶斯分类器3数据集介绍4数据预处理5特征提取6训练分类器7综合测试结果8其他模型方法9最后0前言优质竞赛项目系列,今天要分享的是垃圾邮件(短信)分类算法实现机器学习深度学习该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分更多资料,项目分享:https:
- 深度学习初学者,这些东西你必须了解
我会飞james
姓名:张瀚铎学号:17021211233【嵌牛导读】:深度学习是计算机领域中目前非常火的话题,不仅在学术界有很多论文,在业界也有很多实际运用。本篇博客主要介绍了三种基本的深度学习的架构,并对深度学习的原理作了简单的描述。本篇文章翻译自Medium上一篇入门介绍。【嵌牛鼻子】:大数据机器学习深度学习【嵌牛提问】:深度学习的初学者需要了解的东西?【嵌牛正文】:深度学习是计算机领域中目前非常火的话题,不
- [PyTorch][chapter 1][李宏毅深度学习-AI 简介]
明朝百晓生
深度学习pytorch人工智能
前言:李宏毅深度学习从2017-2023的系列课程总结内容章节强化学习11李宏毅机器学习【2017】40李宏毅机器学习深度学习(完整版)国语【2020】119李宏毅大佬的深度学习与机器学【2022】90李宏毅机器学习完整课程【2023】43总结303目录:AI发展历史AI应用AI工程简介AI模型一AI发展史主要分为三大阶段1950-1980:人工智能概念提出后,相继取得了一批令人瞩目的研究成果80
- 2022最新版-李宏毅机器学习深度学习课程-P51 BERT的各种变体
QwQllly
李宏毅机器学习深度学习深度学习机器学习bert
之前讲的是如何进行fine-tune,现在讲解如何进行pre-train,如何得到一个pretrain好的模型。CoVe其实最早的跟预训练有关的模型,应该是CoVe,是一个基于翻译任务的一个模型,其用encoder的模块做预训练。但是CoVe需要大量的翻译对,这是不容易获得的,能不能通过一大段没有标注的语料进行预训练呢?因为有监督的标注是十分费时费力的,因此采用自监督的方法。即给定一个无标签的语料
- 计算机毕业设计之Python+Spark+Flink考研测与推荐系统 考研大数据分析 考研推荐系统 考研预测系统 考研大数据可视化 考研爬虫可视化 考研数据分析
计算机毕业设计大神
开发技术前端:vue.js后端:springboot+mybatis-plus数据库:mysql算法(机器学习、深度学习):协同过滤算法(基于用户、基于物品全部实现)、KNN爬虫:python、requests、chrome_driver大数据分析:spark、echarts特色/创新点结合百度地图api展示大学地理位置信息;通过KNN等机器学习深度学习算法进行预测;通过协同过滤算法(基于用户+基
- 2022最新版-李宏毅机器学习深度学习课程-P49 GPT的野望
QwQllly
李宏毅机器学习深度学习机器学习深度学习人工智能
GPT→类似于TransformerEncoder训练任务:PredictNextToken使用MASK-attention,不断预测“下一个token”。可以用GPT生成文章。HowtouseGPT?给出描述和例子给出前半段,补上后半段In-contextLearning(noGD)结果目前看起来状况是,有些任务它还真的学会了,举例来说2这个加减法,你给它一个数字加另外一个数字,它真的可以得到,
- #deep_learning_month4_week1_Convolution_model_Application
PerfectDemoT
deep_learning_month4_week1_Convolution_model_Application标签:机器学习深度学习代码已上传github:https://github.com/PerfectDemoT/my_deeplearning_homework[TOC]说明:这是month4_week1的第一个作业,这里用tensorflow构建了一个拥有两个卷基层,两个池化层,一个全连
- 2022最新版-李宏毅机器学习深度学习课程-P50 BERT的预训练和微调
QwQllly
李宏毅机器学习深度学习深度学习机器学习bert人工智能自然语言处理
模型输入无标签文本(Textwithoutannotation),通过消耗大量计算资源预训练(Pre-train)得到一个可以读懂文本的模型,在遇到有监督的任务是微调(Fine-tune)即可。最具代表性是BERT,预训练模型现在命名基本上是源自于动画片《芝麻街》。芝麻街人物经典的预训练模型:ELMo:EmbeddingsfromLanguageModelsBERT:BidirectionalEn
- 【目标检测】01-物体检测基础知识&模型评价指标-深度学习pytorch之物体检测实战-学习笔记
暖焱
#深度学习目标检测
01-物体检测基础知识&模型评价指标物体检测基础知识机器学习深度学习深度学习发展历程深度学习的核心因素深度学习在计算机视觉中的应用计算机视觉计算机视觉任务物体检测技术发展历程RCNN之前RCNN之后两阶算法优点缺点典型算法多阶算法一阶算法优点缺点典型算法Anchor典型算法无Anchor算法评价指标IoU(IntersectionoverUnion)mAP(meanAveragePrecision
- 2022最新版-李宏毅机器学习深度学习课程-P34 自注意力机制类别总结
QwQllly
李宏毅机器学习深度学习机器学习深度学习人工智能
在课程的transformer视频中,李老师详细介绍了部分self-attention内容,但是self-attention其实还有各种各样的变化形式:一、Self-attention运算存在的问题在self-attention中,假设输入序列(query)长度是N,为了捕捉每个value或者token之间的关系,需要产生N个key与之对应,并将query与key之间做dot-product,就可
- 2022最新版-李宏毅机器学习深度学习课程-P46 自监督学习Self-supervised Learning(BERT)
QwQllly
深度学习机器学习学习
一、概述:自监督学习模型与芝麻街参数量ELMO:94MBERT:340MGPT-2:1542MMegatron:8BT5:11BTuringNLG:17BGPT-3:175BSwitchTransformer:1.6T二、Self-supervisedLearning⇒UnsupervisedLearning的一种“自监督学习”数据本身没有标签,所以属于无监督学习;但是训练过程中实际上“有标签”,
- [转载] python标准库系列教程(三)——operator库详细教程
ey_snail
参考链接:Python中的Inplace运算符|2(ixor(),iand(),ipow()等)python进阶教程机器学习深度学习长按二维码关注进入正文Python基础学习:operator模块声明:functools,itertools,operator是Python标准库为我们提供的支持函数式编程的三大模块,合理的使用这三个模块,我们可以写出更加简洁可读的Pythonic代码,本次的系列文章
- 2022最新版-李宏毅机器学习深度学习课程-P26 自注意力机制
QwQllly
李宏毅机器学习深度学习机器学习深度学习人工智能
一、应用情境输入任意长度个向量进行处理。从输入看文字处理(自然语言处理)将word表示为向量one-hotword-embedding声音信号处理每个时间窗口(Window,25ms)视为帧(Frame),视为向量图每个节点视为一个向量Socialgraph(社交网络图)分子式【one-hot】从输出看√输入输出数量相等【每个向量都有一个标签】⇒sequenceLabeling词性标注(POSta
- 2022最新版-李宏毅机器学习深度学习课程-P32 Transformer
QwQllly
李宏毅机器学习深度学习深度学习机器学习transformer
一、seq2seq1.含义输入一个序列,机器输出另一个序列,输出序列长度由机器决定。文本翻译:文本至文本;语音识别:语音至文本;语音合成:文本至语音;聊天机器人:语音至语音。2.应用自然语言处理(NLP问题),不过seq2seq有时候不一定是最佳的解决方法。语音辨识输入是声音讯号的一串的vector,输出是语音辨识的结果,也就是输出的这段声音讯号,所对应的文字⇒输出的长度由机器自己决定机器翻译机器
- 【兔子王赠书第4期】用ChatGPT轻松玩转机器学习与深度学习
Want595
#《粉丝福利》chatgpt机器学习深度学习
文章目录前言机器学习深度学习ChatGPT推荐图书粉丝福利尾声前言兔子王免费赠书第4期来啦,突破传统学习束缚,借助ChatGPT的神奇力量,解锁AI无限可能!机器学习机器学习是人工智能领域的一个重要分支,它的目的是让计算机系统能够自动完成特定任务,而不需要人类专门为其编写指令。机器学习所涉及的技术和算法主要包括统计学、概率论、最优化理论、信息论等。在未来的人工智能时代,机器学习将成为重要的基础技术
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,