- Coursera | Andrew Ng (02-week2-2.10)—局部最优的问题
ZJ_Improve
深度学习正则化以及优化深度学习吴恩达局部最优深度学习
该系列仅在原课程基础上部分知识点添加个人学习笔记,或相关推导补充等。如有错误,还请批评指教。在学习了AndrewNg课程的基础上,为了更方便的查阅复习,将其整理成文字。因本人一直在学习英语,所以该系列以英文为主,同时也建议读者以英文为主,中文辅助,以便后期进阶时,为学习相关领域的学术论文做铺垫。-ZJCoursera课程|deeplearning.ai|网易云课堂转载请注明作者和出处:ZJ微信公众
- 6、5 门关于 AI 和 ChatGPT 的免费课程,带您从 0-100
AI算法蒋同学
一起来学习下ChatGPT吧人工智能chatgpt
5门关于AI和ChatGPT的免费课程,带您从0-100想在2024年免费了解有关AI和ChatGPT的更多信息吗?图片由DALLE3提供活着是多么美好的时光啊。还有什么比现在更适合了解生成式人工智能(尤其是ChatGPT)等人工智能元素的呢!许多人对这个行业感兴趣,但有些人需要更多关于如何到达那里的知识。该博客为您提供了来自哈佛、IBM、DeepLearning.AI等可信机构的免费课程列表。让
- 吴恩达深度学习-学习笔记p1-p6
丢了橘子的夏天
深度学习学习笔记
哔哩哔哩网站视频-[双语字幕]吴恩达深度学习deeplearning.ai网站:up主:mHarvey,视频:[双语字幕]吴恩达深度学习deeplearning.ai一.p11.1欢迎二.p21.2什么是神经网络1.举例:根据面积预测房价假设有六个房子的房屋面积和价格,根据这个数据集,房屋面积预测房价的函数,这些是一个简单的神经网络神经元的功能就是输入面积完成线性运算,取不小于0的值,最后得到预测
- 【吴恩达机器学习】第一周课程笔记
Estella_07
机器学习笔记人工智能
Hello,这里是小梁。下面是我近期学习机器学习的笔记,出发点是希望对自己起到一个督促和输出的作用如果你对我的笔记感兴趣欢迎Like,有不足之处也欢迎评论留言B站【2022吴恩达机器学习Deeplearning.ai课程】笔记参考【吴恩达《MachineLearning》精炼笔记】1机器学习的定义与分类1.1监督学习Supervisedlearning1.2无监督学习Unsupervisedlea
- Coursera | Andrew Ng (01-week-2-2.11)—向量化
ZJ_Improve
深度学习深度学习吴恩达吴恩达深度学习
该系列仅在原课程基础上部分知识点添加个人学习笔记,或相关推导补充等。如有错误,还请批评指教。在学习了AndrewNg课程的基础上,为了更方便的查阅复习,将其整理成文字。因本人一直在学习英语,所以该系列以英文为主,同时也建议读者以英文为主,中文辅助,以便后期进阶时,为学习相关领域的学术论文做铺垫。-ZJCoursera课程|deeplearning.ai|网易云课堂转载请注明作者和出处:ZJ微信公众
- ML学习安排和资源链接
Nice night
#ML吴恩达机器学习
第一阶段:学习前置数学知识机器学习的数学基础_二进制人工智能的博客-CSDN博客第二阶段:认知机器学习吴恩达机器学习【2022中文版教程全集】_哔哩哔哩_bilibili视频5h,看了一点发现后面没字幕了,这个(强推|双字)2022吴恩达机器学习Deeplearning.ai课程_哔哩哔哩_bilibili视频19h。但是这个是属于新课,所以还是先看第三阶段上:仔细了解机器学习视频链接:[中英字幕
- 吴恩达《ChatGPT Prompt Engineering for Developers》学习笔记
stay_foolish12
人工智能
来自:口仆本笔记是deeplearning.ai最近推出的短期课程《ChatGPTPromptEngineeringforDevelopers》的学习总结。1引言总的来说,当前有两类大语言模型(LLM):「基础LLM」和「指令微调LLM」。基础LLM基于大量文本数据训练而成,核心思想为预测一句话的下一个单词(即词语接龙)。基于语料的限制,有时会返回不符合预期的结果(如上图所示)。指令微调LLM基于
- Assignment | 04-week1 -Convolutional Neural Networks: Application Part_2
ZJ_Improve
深度学习吴恩达-Assignment汇总深度学习吴恩达卷积神经网络tensorflow
该系列仅在原课程基础上课后作业部分添加个人学习笔记,如有错误,还请批评指教。在学习了AndrewNg课程的基础上,为了更方便的查阅复习,将其整理成文字。因本人一直在学习英语,所以该系列以英文为主,同时也建议读者以英文为主,中文辅助,以便后期进阶时,为学习相关领域的学术论文做铺垫。-ZJCoursera课程|deeplearning.ai|网易云课堂转载请注明作者和出处:ZJ微信公众号-「SelfI
- 【机器学习小记】【平面数据分类】deeplearning.ai course1 3rd week programming
LittleSeedling
#初学深度学习机器学习神经网络
带有一个隐藏层的平面数据分类数据集介绍数据集形状模型搭建参数初始化前向传播隐藏层输出层反向传播输出层隐藏层梯度下降更新参数预测其他np.dot()与np.multiply()的区别结果使用简单逻辑回归测试不同的隐藏层神经元数测试其他数据集原始数据集测试不同的隐藏层神经元数目标:带有一个隐藏层的平面数据分类神经网络参考自:【中文】【吴恩达课后编程作业】Course1-神经网络和深度学习-第三周作业数
- Coursera | Andrew Ng (02-week-1-1.3)—机器学习基础
ZJ_Improve
深度学习正则化以及优化深度学习吴恩达机器学习深度学习吴恩达coursera
该系列仅在原课程基础上部分知识点添加个人学习笔记,或相关推导补充等。如有错误,还请批评指教。在学习了AndrewNg课程的基础上,为了更方便的查阅复习,将其整理成文字。因本人一直在学习英语,所以该系列以英文为主,同时也建议读者以英文为主,中文辅助,以便后期进阶时,为学习相关领域的学术论文做铺垫。-ZJCoursera课程|deeplearning.ai|网易云课堂转载请注明作者和出处:ZJ微信公众
- 进大厂全靠自学,微软&头条实习生现身说法:我是这样自学深度学习的丨课程传送门...
QbitAl
作者SannyKim郭一璞编译量子位出品|公众号QbitAI跟着网络资料自学、刷MOOC是许多人学深度学习的方式,但深度学习相关资源众多,应该从哪儿开始学呢?富有自学经验的GitHub用户SannyKim贡献出了一份深度学习自学指南。她自学成才,有Udacity、deeplearning.ai、Coursera的一大堆课程认证,甚至连大学都是上的以自学、MOOC著称的Minerva大学,自学卓有成
- 吴恩达机器学习Deeplearning.ai课程学习笔记(Supervised Machine Learning Regression and Classification---week1)
智能提桶工程师
人工智能学习
一、机器学习定义:机器学习即Machinelearning,涉及很多学科,简单点来说,就是使用计算机通过“学习“大量的数据模拟实现人类的行为,也就是让计算机自己学习到一些所谓的”知识与技能“(例如什么是苹果?什么是香蕉?),而且能够通过一些算法组织其实现不断学习不断完善自身的性能与知识架构,换句话说,让计算机越来越”知识渊博“,也就是-----人工智能。二、机器学习分类:机器学习一般分为监督学习与
- 大手笔!吴恩达一口气开放了 3 个 AIGC 教程。。
机器学习社区
自然语言机器学习AIGC人工智能自然语言处理大模型算法
一个月前,DeepLearning.ai创始人吴恩达与OpenAI开发者IzaFulford联手推出了一门面向开发者的技术教程:ChatGPT提示工程。该教程总共分为9个章节,总一个多小时,里面主要涵盖:提示词最佳实践、评论情感分类、文本总结、邮件撰写、文本翻译、快速搭建一个聊天机器人等等。你除了能在这个教程里面学到如何使用Prompt,你还能学到GPT接口调用开发知识。一个月时间过去了,因课程质
- GitHub Copilot Chat将于12月全面推出;DeepLearning.AI免费新课
go2coding
AI日报githubcopilot人工智能
AI新闻GitHubCopilotChat将于12月全面推出,提升开发者的生产力摘要:GitHub宣布将于12月全面推出GitHubCopilotChat,这是GitHubCopilot的一个新功能,旨在帮助开发者编写代码。它能够集成到开发者的桌面IDE环境中,并能够根据上下文联想出后文,不仅限于代码缺省补充和纠错。与此同时,CopilotChat还能够与开发者进行对话,提供更加细致的人机交互体验
- 【深度学习】Coursera的TensorFlow课程练习题精华部分
风度78
大家好,这次给大家翻译的是来自Coursera,由deeplearning.ai提供的TensorFlowinPractice的课程系列的QUIZ部分本文来源:www.kesci.com该系列课程共分为4个专项一、人工智能、机器学习和深度学习的TensorFlow简介二、TensorFlow中的卷积神经网络三、TensorFlow中的自然语言处理四、序列、时间序列与预测原教程链接在此:Tensor
- sheng的学习笔记-【目录】【中文】【deplearning.ai】【吴恩达课后作业目录】
coldstarry
吴恩达作业-深度学习人工智能
学习吴恩达的深度学习,用于记录笔记知识目录和引用文章原文见下面,但已经变为收费的:【目录】【中文】【deplearning.ai】【吴恩达课后作业目录】_吴恩达深度学习何宽-CSDN博客免费的用于学习的github地址,包含笔记和代码,资料来源于深度学习GitHub-fengdu78/deeplearning_ai_books:deeplearning.ai(吴恩达老师的深度学习课程笔记及资源)机
- 微调大型语言模型(一):为什么要微调(Why finetune)?
-派神-
NLPLangchainChatGPT语言模型人工智能自然语言处理chatgpt
今天我们来学习Deeplearning.ai的在线课程微调大型语言模型(一)的第一课:为什么要微调(Whyfinetune)。我们知道像GPT-3.5这样的大型语言模型(LLM)它所学到的知识截止到2021年9月,那么如果我们向ChatGPT询问2022年以后发生的事情,它可能会产生“幻觉”从而给出错误的答案,再比如我们有一些关于企业的某些产品的业务数据,但是由于ChatGPT没有学习过这些数据,
- 2022吴恩达机器学习Deeplearning.ai课程编程作业C1_W2: Linear Regression
alterego2380
机器学习pythonnumpy机器学习线性回归人工智能
PracticeLab:LinearRegressionWelcometoyourfirstpracticelab!Inthislab,youwillimplementlinearregressionwithonevariabletopredictprofitsforarestaurantfranchise.Outline1-Packages2-Linearregressionwithonevar
- LangChain 手记 Conclusion结语
从流域到海域
大语言模型langchain
整理并翻译自DeepLearning.AI×LangChain的官方课程:ConclusionConclusion结语本系列短课展示了大量使用LangChain构建的大语言模型应用,包括处理用户反馈、文档上的问答系统甚至使用LLM来决定发起外部工具的调用(比如搜索)来回答复杂问题。使用LangChain的好处在于能很大程度上提升开发效率,仅需要适量代码,就可以实现复杂的llm应用。课程作者希望大家
- 卷积神经网络之一维卷积、二维卷积、三维卷积
bebr
机器学习卷积神经网络一维二维
1.二维卷积图中的输入的数据维度为14×1414×14,过滤器大小为5×55×5,二者做卷积,输出的数据维度为10×1010×10(14−5+1=1014−5+1=10)。如果你对卷积维度的计算不清楚,可以参考我之前的博客吴恩达深度学习笔记(deeplearning.ai)之卷积神经网络(CNN)(上)。上述内容没有引入channel的概念,也可以说channel的数量为1。如果将二维卷积中输入的
- LangChain手记 Agent 智能体
从流域到海域
大语言模型langchain人工智能
整理并翻译自DeepLearning.AI×LangChain的官方课程:Agent(源代码可见)“人们有时会将LLM看作是知识库,因为它被训练所以记住了来自互联网或其他地方的海量信息,因而当你向它提问时,它可以回答你的问题。有一个更加有用的认知模式是将LLM看作是一个推理引擎,如果提供给他文本块或者额外信息,它可以理由从互联网或者其他地方学会的背景知识利用新信息来帮助回答问题或者进行文本推理或者
- LangChain手记 Evalutation评估
从流域到海域
大语言模型langchain人工智能
整理并翻译自DeepLearning.AI×LangChain的官方课程:Evaluation(源代码可见)基于LLM的应用如何做评估是一个难点,本节介绍了一些思路和工具。“从传统开发转换到基于prompt的开发,开发使用LLM的应用,整个工作流的评估方式需要重新考虑,本节会介绍很多激动人心的概念。”Evaluation评估构建一个上节课介绍过的QAchain:不同之处仅在于加了一个参数:chai
- DeepLearning.ai学习笔记(一)神经网络和深度学习--Week4深层神经网络
marsggbo
机器学习神经网络深度学习前向传播反向传播Andrew-ng
一、深层神经网络深层神经网络的符号与浅层的不同,记录如下:-用L表示层数,该神经网络L=4-n[l]表示第l层的神经元的数量,例如n[1]=n[2]=5,n[3]=3,n[4]=1-a[l]表示第l层中的激活函数,a[l]=g[l](z[l])二、前向和反向传播1.第l层的前向传播输入为a[l−1]输出为a[l],cache(z[l])矢量化表示:Z[l]=W[l]⋅A[l−1]+b[l]A[l]
- LangChain手记 Question Answer 问答系统
从流域到海域
大语言模型langchain
整理并翻译自DeepLearning.AI×LangChain的官方课程:QuestionAnswer(源代码可见)本节介绍使用LangChian构建文档上的问答系统,可以实现给定一个PDF文档,询问关于文档上出现过的某个信息点,LLM可以给出关于该信息点的详情信息。这种使用方式比较灵活,因为并没有使用PDF上的文本对模型进行训练就可以实现文档上的信息点问答。本节介绍的Chain也比较常用,它涉及
- LangChain手记 Chains
从流域到海域
langchain人工智能
整理并翻译自DeepLearning.AI×LangChain的官方课程:Chains(源代码可见)Chains直译链,表达的意思更像是对话链,对话链的背后是思维链LLMChain(LLM链)首先介绍了一个最简单的例子,LLMChain:将一个大语言模型和prompt模板组合起来调用LLMChain,即可得到一个LLMChain对象,该对象的run实现的功能即给定输入自动使用prompt模板生成p
- LangChain手记 Memory
从流域到海域
大语言模型langchain
整理并翻译自DeepLearning.AI×LangChain的官方课程:MemoryMemory使用openai的API调用GPT都是单次调用,所以模型并不记得之前的对话,多轮对话的实现其实是将前面轮次的对话过程保留,在下次对话时作为输入的message数组的一部分,再将新一轮对话的提问也放入message数组,再发起一次API调用,即构手动建对话流(以上笔者注)。构建对话流(LangChain
- LangChain手记 Models,Prompts and Parsers
从流域到海域
大语言模型langchain
整理并翻译自DeepLearning.AI×LangChain的官方课程:Models,PromptsandParsers模型,提示词和解析器(Models,PromptsandParsers)模型:大语言模型提示词:构建传递给模型的输入的方式解析器:获取模型输入,转换为更为结构化的形式以在下游任务中使用为什么使用提示词模板提示词会非常长且具体在可以的时候能直接复用提示词LangChain也为常用
- 使用 Gradio 构建生成式 AI 应用程序(一): 图片内容读取app
-派神-
NLP自然语言处理人工智能自然语言处理深度学习神经网络机器学习
今天我们来学习DeepLearning.AI的在线课程:BuildingGenerativeAIApplicationswithGradio,该课程主要讲述利用gradio来部署机器学习算法应用程序,今天我们来学习第一课:Imagecaptioningapp,该课程主要讲述如何从图片中读取图片的内容信息,如下图所示:今天我们会使用huggingface的Salesforce/blip-image-
- 深度学习阶段性回顾
猫咪的白手套
深度学习人工智能
本文针对过去两周的深度学习理论做阶段性回顾,学习资料来自吴恩达老师的2021版deeplearning.ai课程,内容涵盖深度神经网络改善一直到ML策略的章节。视频链接如下:吴恩达深度学习视频链接(注:本文出自深度学习初学者,此文内容将以初学者的感悟与见解讲述。当然我也会努力搜寻资料以弥补自身认知的不足,希望本文能对深度学习的其他初学者也有所帮助,文章若有不当之处,望大家在评论区多多指正,我将虚心
- LangChain手记 Overview
从流域到海域
大语言模型langchain
整理并翻译自DeepLearning.AI×LangChain的官方课程:Overview综述(Overview)LangChain是为大模型应用开发设计的开源框架LangChain目前提供Python和JavaScript(TypeScript)两种语言的包LangChain的主攻方向是聚合和模块化核心附加值:模块化的组件用例:针对常见组合组件的方式提供了简单易用的模板组件模型(Models)集
- java观察者模式
3213213333332132
java设计模式游戏观察者模式
观察者模式——顾名思义,就是一个对象观察另一个对象,当被观察的对象发生变化时,观察者也会跟着变化。
在日常中,我们配java环境变量时,设置一个JAVAHOME变量,这就是被观察者,使用了JAVAHOME变量的对象都是观察者,一旦JAVAHOME的路径改动,其他的也会跟着改动。
这样的例子很多,我想用小时候玩的老鹰捉小鸡游戏来简单的描绘观察者模式。
老鹰会变成观察者,母鸡和小鸡是
- TFS RESTful API 模拟上传测试
ronin47
TFS RESTful API 模拟上传测试。
细节参看这里:https://github.com/alibaba/nginx-tfs/blob/master/TFS_RESTful_API.markdown
模拟POST上传一个图片:
curl --data-binary @/opt/tfs.png http
- PHP常用设计模式单例, 工厂, 观察者, 责任链, 装饰, 策略,适配,桥接模式
dcj3sjt126com
设计模式PHP
// 多态, 在JAVA中是这样用的, 其实在PHP当中可以自然消除, 因为参数是动态的, 你传什么过来都可以, 不限制类型, 直接调用类的方法
abstract class Tiger {
public abstract function climb();
}
class XTiger extends Tiger {
public function climb()
- hibernate
171815164
Hibernate
main,save
Configuration conf =new Configuration().configure();
SessionFactory sf=conf.buildSessionFactory();
Session sess=sf.openSession();
Transaction tx=sess.beginTransaction();
News a=new
- Ant实例分析
g21121
ant
下面是一个Ant构建文件的实例,通过这个实例我们可以很清楚的理顺构建一个项目的顺序及依赖关系,从而编写出更加合理的构建文件。
下面是build.xml的代码:
<?xml version="1
- [简单]工作记录_接口返回405原因
53873039oycg
工作
最近调接口时候一直报错,错误信息是:
responseCode:405
responseMsg:Method Not Allowed
接口请求方式Post.
- 关于java.lang.ClassNotFoundException 和 java.lang.NoClassDefFoundError 的区别
程序员是怎么炼成的
真正完成类的加载工作是通过调用 defineClass来实现的;
而启动类的加载过程是通过调用 loadClass来实现的;
就是类加载器分为加载和定义
protected Class<?> findClass(String name) throws ClassNotFoundExcept
- JDBC学习笔记-JDBC详细的操作流程
aijuans
jdbc
所有的JDBC应用程序都具有下面的基本流程: 1、加载数据库驱动并建立到数据库的连接。 2、执行SQL语句。 3、处理结果。 4、从数据库断开连接释放资源。
下面我们就来仔细看一看每一个步骤:
其实按照上面所说每个阶段都可得单独拿出来写成一个独立的类方法文件。共别的应用来调用。
1、加载数据库驱动并建立到数据库的连接:
Html代码
St
- rome创建rss
antonyup_2006
tomcatcmsxmlstrutsOpera
引用
1.RSS标准
RSS标准比较混乱,主要有以下3个系列
RSS 0.9x / 2.0 : RSS技术诞生于1999年的网景公司(Netscape),其发布了一个0.9版本的规范。2001年,RSS技术标准的发展工作被Userland Software公司的戴夫 温那(Dave Winer)所接手。陆续发布了0.9x的系列版本。当W3C小组发布RSS 1.0后,Dave W
- html表格和表单基础
百合不是茶
html表格表单meta锚点
第一次用html来写东西,感觉压力山大,每次看见别人发的都是比较牛逼的 再看看自己什么都还不会,
html是一种标记语言,其实很简单都是固定的格式
_----------------------------------------表格和表单
表格是html的重要组成部分,表格用在body里面的
主要用法如下;
<table>
&
- ibatis如何传入完整的sql语句
bijian1013
javasqlibatis
ibatis如何传入完整的sql语句?进一步说,String str ="select * from test_table",我想把str传入ibatis中执行,是传递整条sql语句。
解决办法:
<
- 精通Oracle10编程SQL(14)开发动态SQL
bijian1013
oracle数据库plsql
/*
*开发动态SQL
*/
--使用EXECUTE IMMEDIATE处理DDL操作
CREATE OR REPLACE PROCEDURE drop_table(table_name varchar2)
is
sql_statement varchar2(100);
begin
sql_statement:='DROP TABLE '||table_name;
- 【Linux命令】Linux工作中常用命令
bit1129
linux命令
不断的总结工作中常用的Linux命令
1.查看端口被哪个进程占用
通过这个命令可以得到占用8085端口的进程号,然后通过ps -ef|grep 进程号得到进程的详细信息
netstat -anp | grep 8085
察看进程ID对应的进程占用的端口号
netstat -anp | grep 进程ID
&
- 优秀网站和文档收集
白糖_
网站
集成 Flex, Spring, Hibernate 构建应用程序
性能测试工具-JMeter
Hmtl5-IOCN网站
Oracle精简版教程网站
鸟哥的linux私房菜
Jetty中文文档
50个jquery必备代码片段
swfobject.js检测flash版本号工具
- angular.extend
boyitech
AngularJSangular.extendAngularJS API
angular.extend 复制src对象中的属性去dst对象中. 支持多个src对象. 如果你不想改变一个对象,你可以把dst设为空对象{}: var object = angular.extend({}, object1, object2). 注意: angular.extend不支持递归复制. 使用方法: angular.extend(dst, src); 参数:
- java-谷歌面试题-设计方便提取中数的数据结构
bylijinnan
java
网上找了一下这道题的解答,但都是提供思路,没有提供具体实现。其中使用大小堆这个思路看似简单,但实现起来要考虑很多。
以下分别用排序数组和大小堆来实现。
使用大小堆:
import java.util.Arrays;
public class MedianInHeap {
/**
* 题目:设计方便提取中数的数据结构
* 设计一个数据结构,其中包含两个函数,1.插
- ajaxFileUpload 针对 ie jquery 1.7+不能使用问题修复版本
Chen.H
ajaxFileUploadie6ie7ie8ie9
jQuery.extend({
handleError: function( s, xhr, status, e ) {
// If a local callback was specified, fire it
if ( s.error ) {
s.error.call( s.context || s, xhr, status, e );
}
- [机器人制造原则]机器人的电池和存储器必须可以替换
comsci
制造
机器人的身体随时随地可能被外来力量所破坏,但是如果机器人的存储器和电池可以更换,那么这个机器人的思维和记忆力就可以保存下来,即使身体受到伤害,在把存储器取下来安装到一个新的身体上之后,原有的性格和能力都可以继续维持.....
另外,如果一
- Oracle Multitable INSERT 的用法
daizj
oracle
转载Oracle笔记-Multitable INSERT 的用法
http://blog.chinaunix.net/uid-8504518-id-3310531.html
一、Insert基础用法
语法:
Insert Into 表名 (字段1,字段2,字段3...)
Values (值1,
- 专访黑客历史学家George Dyson
datamachine
on
20世纪最具威力的两项发明——核弹和计算机出自同一时代、同一群年青人。可是,与大名鼎鼎的曼哈顿计划(第二次世界大战中美国原子弹研究计划)相 比,计算机的起源显得默默无闻。出身计算机世家的历史学家George Dyson在其新书《图灵大教堂》(Turing’s Cathedral)中讲述了阿兰·图灵、约翰·冯·诺依曼等一帮子天才小子创造计算机及预见计算机未来
- 小学6年级英语单词背诵第一课
dcj3sjt126com
englishword
always 总是
rice 水稻,米饭
before 在...之前
live 生活,居住
usual 通常的
early 早的
begin 开始
month 月份
year 年
last 最后的
east 东方的
high 高的
far 远的
window 窗户
world 世界
than 比...更
- 在线IT教育和在线IT高端教育
dcj3sjt126com
教育
codecademy
http://www.codecademy.com codeschool
https://www.codeschool.com teamtreehouse
http://teamtreehouse.com lynda
http://www.lynda.com/ Coursera
https://www.coursera.
- Struts2 xml校验框架所定义的校验文件
蕃薯耀
Struts2 xml校验Struts2 xml校验框架Struts2校验
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 15:54:59 星期六
http://fa
- mac下安装rar和unrar命令
hanqunfeng
mac
1.下载:http://www.rarlab.com/download.htm 选择
RAR 5.21 for Mac OS X 2.解压下载后的文件 tar -zxvf rarosx-5.2.1.tar 3.cd rar sudo install -c -o $USER unrar /bin #输入当前用户登录密码 sudo install -c -o $USER rar
- 三种将list转换为map的方法
jackyrong
list
在本文中,介绍三种将list转换为map的方法:
1) 传统方法
假设有某个类如下
class Movie {
private Integer rank;
private String description;
public Movie(Integer rank, String des
- 年轻程序员需要学习的5大经验
lampcy
工作PHP程序员
在过去的7年半时间里,我带过的软件实习生超过一打,也看到过数以百计的学生和毕业生的档案。我发现很多事情他们都需要学习。或许你会说,我说的不就是某种特定的技术、算法、数学,或者其他特定形式的知识吗?没错,这的确是需要学习的,但却并不是最重要的事情。他们需要学习的最重要的东西是“自我规范”。这些规范就是:尽可能地写出最简洁的代码;如果代码后期会因为改动而变得凌乱不堪就得重构;尽量删除没用的代码,并添加
- 评“女孩遭野蛮引产致终身不育 60万赔偿款1分未得”医腐深入骨髓
nannan408
先来看南方网的一则报道:
再正常不过的结婚、生子,对于29岁的郑畅来说,却是一个永远也无法实现的梦想。从2010年到2015年,从24岁到29岁,一张张新旧不一的诊断书记录了她病情的同时,也清晰地记下了她人生的悲哀。
粗暴手术让人发寒
2010年7月,在酒店做服务员的郑畅发现自己怀孕了,可男朋友却联系不上。在没有和家人商量的情况下,她决定堕胎。
12月5日,
- 使用jQuery为input输入框绑定回车键事件 VS 为a标签绑定click事件
Everyday都不同
jspinput回车键绑定clickenter
假设如题所示的事件为同一个,必须先把该js函数抽离出来,该函数定义了监听的处理:
function search() {
//监听函数略......
}
为input框绑定回车事件,当用户在文本框中输入搜索关键字时,按回车键,即可触发search():
//回车绑定
$(".search").keydown(fun
- EXT学习记录
tntxia
ext
1. 准备
(1) 官网:http://www.sencha.com/
里面有源代码和API文档下载。
EXT的域名已经从www.extjs.com改成了www.sencha.com ,但extjs这个域名会自动转到sencha上。
(2)帮助文档:
想要查看EXT的官方文档的话,可以去这里h
- mybatis3的mapper文件报Referenced file contains errors
xingguangsixian
mybatis
最近使用mybatis.3.1.0时无意中碰到一个问题:
The errors below were detected when validating the file "mybatis-3-mapper.dtd" via the file "account-mapper.xml". In most cases these errors can be d