- OpenCV高阶操作
富士达幸运星
opencv人工智能计算机视觉
在图像处理与计算机视觉领域,OpenCV(OpenSourceComputerVisionLibrary)无疑是最为强大且广泛使用的工具之一。从基础的图像读取、1.图片的上下,采样下采样(Downsampling)下采样通常用于减小图像的尺寸,从而减少图像中的像素数。这个过程可以通过多种方法实现,但最常见的是通过图像金字塔中的pyrDown函数(在OpenCV中)或其他类似的滤波器(如平均池化、最
- OpenCV图像处理技术之图像金字塔
WYOLO
opencv
FuXianjun.AllRightsReserved.所有素材来自于小傅老师。开始今天的学习吧!学习的是图像金字塔。我们的学习目标:能够理解高斯金字塔与拉普拉斯金字塔的处理过程能够使用相关函数进行高斯金字塔可逆性分析能够使用相关函数进行拉普拉斯金字塔无损恢复图像能够掌握ROI的应用处理能够掌握泛洪填充算法并使用相关函数进行处理冲冲冲!任务一:高斯金字塔高斯金字塔由cv2.pyrDown()与cv
- 33从传统算法到深度学习:目标检测入门实战 --图像金字塔
Jachin111
图像金字塔的作用及实现图像金字塔简单来说就是用多个不同的尺寸来表示一张图片。如下图,最左边的图片是原始图片,然后从左向右图片的尺寸依次缩小直到图片的尺寸达到一个阈值,这个阈值就是多次缩小图片的最小尺寸,不会有比这更小尺寸的图片了,像这种图片的尺寸逐步递增或递减的多张图层就是图像金字塔,每张不同尺寸的图片都称为图像金字塔的一层。图像金字塔的目的就是寻找图片中出现的不同尺寸的目标(物体、动物等)。im
- OpenCV-38 图像金字塔
一道秘制的小菜
OpenCVopencv计算机视觉图像处理人工智能pythonnumpy
目录一、图像金字塔1.高斯金字塔2.拉普拉斯金字塔一、图像金字塔图像金字塔是图像中多尺度表达的一种,最主要用于图像的分割,是一种以多分辨率来解释图像的有效但概念简单的结构。简单来说,图像金字塔是同一图像不同分辨率的子图集合。图像金字塔最初用于机器视觉和图像压缩,一幅图像的金字塔是一系列以金字塔状排列的分辨率逐步降低,且来源于同一张原始图的图像集合。其通过梯次向下采样获得,直到达到某个终止条件才停止
- 图像金字塔
猴子喜
1.基本概念一幅图像的金字塔是一系列以金字塔形状排列的分辨率逐步降低,且来源于同一张原始图的图像集合。其通过梯次向下采样获得,直到达到某个终止条件才停止采样。金字塔的底部是待处理图像的高分辨率表示,而顶部是低分辨率的近似。2.高斯金字塔和拉普拉斯金字塔高斯金字塔用来向下降采样图像拉普拉斯金字塔则用来从金字塔底层图像中向上采样重建一个图像。
- 34从传统算法到深度学习:目标检测入门实战 --方向梯度直方图
Jachin111
什么是方向梯度直方图在前面的实验1、实验2中,我们了解到传统的目标检测流程可分为三个步骤,第一步是使用滑动窗口和图像金字塔从图片中选择一些区域。第二步是将选择出来的区域转化为人工设计的特征,可称为特征提取。第三步是将这些特征输入分类器进行分类。方向梯度直方图(HistogramofOrientedGradients)以下简称HOG,就是一种人工设计的特征,用来简化图像表述的特征描述符。下图中左边的
- 12.2 关键点提取——SIFT
YANQ662
7.数据处理计算机视觉人工智能
一、理论文章看了以下博文:Sift中尺度空间、高斯金字塔、差分金字塔(DOG金字塔)、图像金字塔-CSDN博客该文章对SIFT写的很详细,所以在这里我直接抄过来作为笔记。如果以后作者变为付费文章可以提醒我删除。1.图像金字塔图像金字塔是一种以多分辨率来解释图像的结构,通过对原始图像进行多尺度像素采样的方式,生成N个不同分辨率的图像。把具有最高级别分辨率的图像放在底部,以金字塔形状排列,往上是一系列
- OpenCV 12 - 图像金字塔和DOG概念
江凡心
opencv人工智能计算机视觉
1图像金字塔概念1.我们在图像处理中常常会调整图像大小,最常见的就是放大(zoomin)和缩小(zoomout),尽管凡何变换也可以实现图像放大和缩小2.一个图像金字塔式一系列的图像组成,最底下一张是图像尺寸最大,最上方的图像尺寸最小,从空间上从上向下看就像一个古代的金字塔3层级越高,则图像越小,分辨率越低。高斯金字塔(Gaussianpyramid)——用来向下采样,主要的图像金字塔。拉普拉斯金
- C++实现图像金字塔下采样和上采样
痛&快乐着
C++学习图像处理c++图像处理
文章目录1.图像金字塔2.图像金字塔下采样和上采样原理图像金字塔–下采样(降采样)图像金字塔–上采样(升采样)3.python代码实现4.C++代码实现5.参考文献1.图像金字塔图像金字塔是对图像的一种多尺度表达,将各个尺度的图像按照分辨率从小到大,依次从上到下排列,就会形成类似金字塔的结构,因此称为图像金字塔。该组图像是由单张图像不断进行下采样所产生的,从底部第0层开始,逐层下采样,一直堆叠到金
- opencv学习 特征提取
小猴啊0.0
opencv学习人工智能
内容来源于《opencv4应用开发入门、进阶与工程化实践》图像金字塔略拉普拉斯金字塔对输入图像进行reduce操作会生成不同分辨率的图像,对这些图像进行expand操作,然后使用reduce减去expand之后的结果,就会得到拉普拉斯金字塔图像。详情可查看https://zhuanlan.zhihu.com/p/80362140图像金字塔融合拉普拉斯金字塔通过源图像减去先缩小再放大的图像构成,保留
- C++ 程序使用 OpenCV 库来创建一个图像金字塔,然后将这些图像合并成一张大图
小秋 AI SLAM入门实战
opencvopencv计算机视觉
文章目录源码文件功能解读编译文件源码文件#include#include#include#includeintmain(){//这里应该有代码来生成或加载一系列图像到imagePyramidstd::vectorimagePyramid;intimage_name=0;//用于生成输出文件名//示例:创建一系列彩色图像加入到金字塔中for(inti=0;i=imagePyramid.size())
- 人脸识别 基于MTCNN网络的人脸检测与对齐算法(MTCNN代码复现)
郭庆汝
MTCNN人脸识别
人脸识别基于MTCNN网络的人脸检测与对齐算法(MTCNN代码复现)论文背景人脸检测与人脸对齐意义论文的研究成果人脸检测的研究趋势论文采用的方法思路阶段一阶段二:阶段三卷积网络设计层面Loss损失函数的设定面部分类边界框回归人脸关键点定位L2范数在线困难挖掘论文实验数据集网络模块代码实现激活函数P-Net模块代码R-Net模块代码O-Net图像处理过程中图像金字塔MTCNN项目代码实现关于训练流程
- FPN结构
酸酸甜甜我最爱
基础理论学习人工智能
FPN——FeaturePyramidNetworksbackbone指网络的主干结构。在FasterR-CNN中就用到FPN结构了,FPN结构对网络的好处在于:针对目标检测任务,cocoAP(IoU从0.5~0.95的均值)提升2.3个点,pascalAP提升3.8个点。图a是一个特征图像金字塔结构,在传统的图像处理中是非常常见的一个办法。针对我们要检测不同尺度的目标的时候呢,会将图片首先给缩放
- Halcon指定区域的形状匹配
electrical1024
计算机视觉人工智能图像处理算法
Halcon指定区域的形状匹配文章目录Halcon指定区域的形状匹配1.在参考图像中选择目标2.创建模板3.搜索目标在这个实例中,会介绍如何根据选定的ROI选择合适的图像金字塔参数,创建包含这个区域的形状模板,并进行精确的基于形状模板的匹配。最后,将匹配到的形状区域在测试图像上标示出来。1.在参考图像中选择目标采集图像之后,接下来要做的是确定ROI的范围,创建一个包含目标的ROI。在本例中,首先使
- 目标检测 - FPN结构
mango1698
AI目标检测深度学习人工智能
论文:FeaturePyramidNetworksforObjectDetection网址:https://arxiv.org/abs/1612.03144图a为特征图像金字塔,针对我们要检测不同尺度的目标时,我们会将图片缩放到不同的尺度,针对每个尺度的图片都经过我们的模型进行预测。面临问题:生成n个不同的尺度,就要重新预测n次,这样效率是很低的。图b为Faster-CNN采用的一种方式,图片通过
- Halcon图像金字塔inspect_shape_model
electrical1024
计算机视觉人工智能图像处理算法
Halcon图像金字塔本文将讲述一种加速模板匹配的方法——图像金字塔。在Halcon的模板匹配过程中,除了基于描述符的匹配之外,其他几种匹配方法都用到了图像金字塔。图像金字塔是按照一定的排列顺序显示的一系列图像信息,包括原始图像和不同尺寸的下采样图像,如图所示。为了提高匹配速度,一般是用一个图像金字塔,它包括原图的各种下采样版本,如原始全尺寸及各个层级的下采样图像。这一系列图像从大到小、自下而上构
- Halcon基于形状的模板匹配
electrical1024
计算机视觉图像处理算法
Halcon基于形状的模板匹配基于形状的模板匹配,也称为基于边缘方向梯度的匹配,是一种最常用也最前沿的模板匹配算法。该算法以物体边缘的梯度相关性作为匹配标准,原理是提取ROI中的边缘特征,结合灰度信息创建模板,并根据模板的大小和清晰度的要求生成多层级的图像金字塔模型。接着在图像金字塔层中自上而下逐层搜索模板图像,直到搜索到最底层或得到确定的匹配结果为止。下图是基于形状的模板匹配的一个例子。图(a)
- python数字图像处理基础(五)——Canny边缘检测、图像金字塔、图像分割
_hermit:
数字图像处理python计算机视觉opencv
目录Canny边缘检测原理步骤图像金字塔1.高斯金字塔2.拉普拉斯金字塔图像分割图像轮廓检测1.检测轮廓2.绘制轮廓3.补充Canny边缘检测梯度是什么?梯度就是变化的最快的那个方向edge=cv2.Canny(image,threshold1,threshold2[,edges[,apertureSize[,L2gradient]]])第一个参数是需要处理的原图像,该图像必须为单通道的灰度图;第
- 09- OpenCV:图像上采样和降采样
Ivy_belief
OpenCVopencv人工智能计算机视觉图像上采样和降采样
目录1、上采样和降采样简介2、采样的应用场景3、采样的API4、图像金字塔概念5、代码演示1、上采样和降采样简介在图像处理中,上采样(Upsampling)和降采样(Downsampling)是常用的操作。(1)上采样(Upsampling)上采样是将图像的分辨率增加的过程,通常使用插值方法来填充新生成的像素。OpenCV中常用的上采样函数是cv::resize,可以通过指定目标图像的尺寸来实现上
- 【Emgu.CV教程】5.3、几何变换之金字塔变换
..活宝..
EmguCV使用教程计算机视觉图像处理c#Emgu.CV
这一段文字描述来自百度百科:图像金字塔是图像多尺度表达的一种,是一种以多分辨率来解释图像的有效但概念简单的结构。一幅图像的图像金字塔是一系列以金字塔形状(自下而上)逐步降低,且来源于同一张原始图的图像分辨率集合。其通过梯次向下采样获得,直到达到某个终止条件才停止采样。我们将一层一层的图像比喻成金字塔,层级越高,则图像越小,分辨率越低。下面的图片也来自百度百科,金字塔就是从塔尖开始一直到塔底,图像的
- opencv中图像金字塔与图片尺寸缩放
su945
1.图像金子塔图像金字塔是图像中多尺度表达的一种,最主要用于图像的分割,是一种以多分辨率来解释图像的有效但概念简单的结构。图像金字塔最初用于机器视觉和图像压缩,一幅图像的金字塔是一系列以金字塔形状排列的分辨率逐步降低,且来源于同一张原始图的图像集合。其通过梯次向下采样获得,直到达到某个终止条件才停止采样。金字塔的底部是待处理图像的高分辨率表示,而顶部是低分辨率的近似。一般情况下有两种类型的图像金字
- CV必备的15个多尺度模型分享,涵盖特征融合、多尺度预测等4种网络结构
深度之眼
深度学习干货人工智能干货深度学习人工智能cnn多尺度融合特征融合
在卷积神经网络中,感受野的大小会影响到模型能够捕捉到的特征的尺度,从而影响模型的性能。因此我们在设计网络时,需要合理地控制感受野的大小。那么问题来了:怎样才能合理控制?到目前为止,已有很多学者设计出了各种各样的多尺度模型架构供我们学习参考。这其中,图像金字塔和特征金字塔是实现多尺度的两种常用方法。更具体点,可以分为多尺度输入网络、多尺度特征融合网络、多尺度特征预测融合网络、多尺度特征和预测融合网络
- opencv图像金字塔
Alphapeople
opencv计算机视觉人工智能
下采样:#include#includeintmain(){//读取图像cv::Matsrc=cv::imread("C:/Users/10623/Pictures/adf4d0d56444414cbeb809f0933b9214.png");if(src.empty()){std::cout#includeintmain(){//读取图像cv::Matsrc=cv::imread("path_t
- 《数字图像处理》第七章 小波域多分辨率处理 学习笔记
:铭碑于心、
《数字图像处理》学习笔记附部分实例代码实现学习笔记c++opencv图像处理
小波域多分辨率处理0.前言1.背景1.1图像金字塔1.2子带编码2.多分辨率展开2.1级数展开2.2尺度函数2.3小波函数0.前言本章难度大(看不太懂),没有什么详细记录,大家还得自行查阅其他相关博客视频等。小波变换基于小型波(傅里叶变换以正弦函数为基函数).FT的结果完全丢失了时间信息,而小波变换的意义就在于判断什么时间(间隔)出现什么样的频谱成分.辅助材料:THEWAVELETTUTORIAL
- 02 特征点提取器 ORBextractor
算法导航
ORB-SLAM2ORB-SLAM2SLAM
文章目录02特征点提取器ORBextractor2.0基础知识2.0.1图像金字塔2.0.2ORB特征点的关键点和描述子2.1构造函数:ORBextractor()2.2构建图像金字塔ComputePyramid()2.3提取特征点并筛选ComputeKeyPointsOctTree()2.4筛选特征点DistributeOctTree()2.5计算特征点方向computeOrientation(
- 详谈ORB-SLAM2的地图点MapPoint
极客范儿
━═━═━◥MR◤━═━═━1024程序员节
ORB-SLAM2中维护的是局部建图,在项目里所谓的地图就是两个数组:特征点数组和关键帧数组。所有关键帧和特征点的结合就是地图信息,所以在ORB-SLAM2中最重要的两个部分就是地图点和关键帧。这两个部分在设计上非常像,代码重复率很高。文章目录一、特征点和地图点的区别1、特征点是`2D`的,相机图像上的点(图像金字塔)2、地图点是`3D`的,根据同一特征点在多个图片中的不同位置三角化得到的二、各成
- 图像金字塔
为暗香来
计算机视觉opencvpython
图像金字塔高斯金字塔拉普拉斯金字塔对每一层图像特征提取结果可能是不同的,把结果总和在一起。高斯金字塔向下采样(缩小)1)对于给定的图像先做一次高斯平滑处理,也就是使用一个卷积核对图像进行卷积操作2)然后再对图像采样,去除图像中的偶数行和偶数列,然后就得到一张图片3)对这张图片循环1)和2)操作就可以得到高斯金字塔向上采样(放大)1)图像在每个方向扩大为原来的2倍,新增的行和列用0填充2)使用先前同
- 项目前置知识整理(1):图像增强技术之多曝光融合
NoNoUnknow
图像处理人工智能
声明:理论和思想来自大磊哥,请先阅读他的文章和观看视频。本人仅是根据自己的理解参考复现作为锻炼。目的:输出高质量图像;理论参考:采集曝光程度不同的图像后,通过图像算法实现融合;实际实现:采集单张图片,通过算法生成曝光度(亮度不同)的两张图像,进行融合;参考视频:22_基于图像金字塔的曝光融合(第一讲)_大磊FPGA图像处理_哔哩哔哩_bilibili知识点:(0)双线性插值法本质上是一个FPGA的
- OpenCV-Python(20):图像金字塔
图灵追慕者
opencv-pythonopencv图像处理图像金字塔高斯金字塔拉普拉斯金子塔图像融合
目标学习图像金字塔使用图像创建一个新水果:橘子苹果学习的函数cv2.pyrUp()、cv2.pyrDown()。说明图像金字塔(imagepyramid)是一种在计算机视觉和图像处理中常用的技术,用于在不同分辨率下对图像进行分析和处理。图像金字塔可以看作是图像的多个分辨率版本,其中每个版本都是通过对原始图像进行降采样(downsampling)或上采样(upsampling)得到的。降采样是指将图
- 36从传统算法到深度学习:目标检测入门实战 --行人检测
Jachin111
行人检测基本流程在实验1到实验3中我们分别学习了滑动窗口、图像金字塔、方向梯度直方图。本节实验我们将结合这些方法来构建一个传统的行人检测算法。简单来说行人检测就是在提供的图像中,我们想要计算机分辨出哪些是人并且用矩形框标记出人出现在图片中的哪些位置。下图左上角图片中有一个人,如果我们想要用传统的目标检测方法检测到这个人的话,一般分为下面几个步骤。使用图像金字塔将图片按一定缩放比例生成不同尺寸图片(
- web前段跨域nginx代理配置
刘正强
nginxcmsWeb
nginx代理配置可参考server部分
server {
listen 80;
server_name localhost;
- spring学习笔记
caoyong
spring
一、概述
a>、核心技术 : IOC与AOP
b>、开发为什么需要面向接口而不是实现
接口降低一个组件与整个系统的藕合程度,当该组件不满足系统需求时,可以很容易的将该组件从系统中替换掉,而不会对整个系统产生大的影响
c>、面向接口编口编程的难点在于如何对接口进行初始化,(使用工厂设计模式)
- Eclipse打开workspace提示工作空间不可用
0624chenhong
eclipse
做项目的时候,难免会用到整个团队的代码,或者上一任同事创建的workspace,
1.电脑切换账号后,Eclipse打开时,会提示Eclipse对应的目录锁定,无法访问,根据提示,找到对应目录,G:\eclipse\configuration\org.eclipse.osgi\.manager,其中文件.fileTableLock提示被锁定。
解决办法,删掉.fileTableLock文件,重
- Javascript 面向对面写法的必要性?
一炮送你回车库
JavaScript
现在Javascript面向对象的方式来写页面很流行,什么纯javascript的mvc框架都出来了:ember
这是javascript层的mvc框架哦,不是j2ee的mvc框架
我想说的是,javascript本来就不是一门面向对象的语言,用它写出来的面向对象的程序,本身就有些别扭,很多人提到js的面向对象首先提的是:复用性。那么我请问你写的js里有多少是可以复用的,用fu
- js array对象的迭代方法
换个号韩国红果果
array
1.forEach 该方法接受一个函数作为参数, 对数组中的每个元素
使用该函数 return 语句失效
function square(num) {
print(num, num * num);
}
var nums = [1,2,3,4,5,6,7,8,9,10];
nums.forEach(square);
2.every 该方法接受一个返回值为布尔类型
- 对Hibernate缓存机制的理解
归来朝歌
session一级缓存对象持久化
在hibernate中session一级缓存机制中,有这么一种情况:
问题描述:我需要new一个对象,对它的几个字段赋值,但是有一些属性并没有进行赋值,然后调用
session.save()方法,在提交事务后,会出现这样的情况:
1:在数据库中有默认属性的字段的值为空
2:既然是持久化对象,为什么在最后对象拿不到默认属性的值?
通过调试后解决方案如下:
对于问题一,如你在数据库里设置了
- WebService调用错误合集
darkranger
webservice
Java.Lang.NoClassDefFoundError: Org/Apache/Commons/Discovery/Tools/DiscoverSingleton
调用接口出错,
一个简单的WebService
import org.apache.axis.client.Call;import org.apache.axis.client.Service;
首先必不可
- JSP和Servlet的中文乱码处理
aijuans
Java Web
JSP和Servlet的中文乱码处理
前几天学习了JSP和Servlet中有关中文乱码的一些问题,写成了博客,今天进行更新一下。应该是可以解决日常的乱码问题了。现在作以下总结希望对需要的人有所帮助。我也是刚学,所以有不足之处希望谅解。
一、表单提交时出现乱码:
在进行表单提交的时候,经常提交一些中文,自然就避免不了出现中文乱码的情况,对于表单来说有两种提交方式:get和post提交方式。所以
- 面试经典六问
atongyeye
工作面试
题记:因为我不善沟通,所以在面试中经常碰壁,看了网上太多面试宝典,基本上不太靠谱。只好自己总结,并试着根据最近工作情况完成个人答案。以备不时之需。
以下是人事了解应聘者情况的最典型的六个问题:
1 简单自我介绍
关于这个问题,主要为了弄清两件事,一是了解应聘者的背景,二是应聘者将这些背景信息组织成合适语言的能力。
我的回答:(针对技术面试回答,如果是人事面试,可以就掌
- contentResolver.query()参数详解
百合不是茶
androidquery()详解
收藏csdn的博客,介绍的比较详细,新手值得一看 1.获取联系人姓名
一个简单的例子,这个函数获取设备上所有的联系人ID和联系人NAME。
[java]
view plain
copy
public void fetchAllContacts() {
 
- ora-00054:resource busy and acquire with nowait specified解决方法
bijian1013
oracle数据库killnowait
当某个数据库用户在数据库中插入、更新、删除一个表的数据,或者增加一个表的主键时或者表的索引时,常常会出现ora-00054:resource busy and acquire with nowait specified这样的错误。主要是因为有事务正在执行(或者事务已经被锁),所有导致执行不成功。
1.下面的语句
- web 开发乱码
征客丶
springWeb
以下前端都是 utf-8 字符集编码
一、后台接收
1.1、 get 请求乱码
get 请求中,请求参数在请求头中;
乱码解决方法:
a、通过在web 服务器中配置编码格式:tomcat 中,在 Connector 中添加URIEncoding="UTF-8";
1.2、post 请求乱码
post 请求中,请求参数分两部份,
1.2.1、url?参数,
- 【Spark十六】: Spark SQL第二部分数据源和注册表的几种方式
bit1129
spark
Spark SQL数据源和表的Schema
case class
apply schema
parquet
json
JSON数据源 准备源数据
{"name":"Jack", "age": 12, "addr":{"city":"beijing&
- JVM学习之:调优总结 -Xms -Xmx -Xmn -Xss
BlueSkator
-Xss-Xmn-Xms-Xmx
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。典型设置:
java -Xmx355
- jqGrid 各种参数 详解(转帖)
BreakingBad
jqGrid
jqGrid 各种参数 详解 分类:
源代码分享
个人随笔请勿参考
解决开发问题 2012-05-09 20:29 84282人阅读
评论(22)
收藏
举报
jquery
服务器
parameters
function
ajax
string
- 读《研磨设计模式》-代码笔记-代理模式-Proxy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
/*
* 下面
- 应用升级iOS8中遇到的一些问题
chenhbc
ios8升级iOS8
1、很奇怪的问题,登录界面,有一个判断,如果不存在某个值,则跳转到设置界面,ios8之前的系统都可以正常跳转,iOS8中代码已经执行到下一个界面了,但界面并没有跳转过去,而且这个值如果设置过的话,也是可以正常跳转过去的,这个问题纠结了两天多,之前的判断我是在
-(void)viewWillAppear:(BOOL)animated
中写的,最终的解决办法是把判断写在
-(void
- 工作流与自组织的关系?
comsci
设计模式工作
目前的工作流系统中的节点及其相互之间的连接是事先根据管理的实际需要而绘制好的,这种固定的模式在实际的运用中会受到很多限制,特别是节点之间的依存关系是固定的,节点的处理不考虑到流程整体的运行情况,细节和整体间的关系是脱节的,那么我们提出一个新的观点,一个流程是否可以通过节点的自组织运动来自动生成呢?这种流程有什么实际意义呢?
这里有篇论文,摘要是:“针对网格中的服务
- Oracle11.2新特性之INSERT提示IGNORE_ROW_ON_DUPKEY_INDEX
daizj
oracle
insert提示IGNORE_ROW_ON_DUPKEY_INDEX
转自:http://space.itpub.net/18922393/viewspace-752123
在 insert into tablea ...select * from tableb中,如果存在唯一约束,会导致整个insert操作失败。使用IGNORE_ROW_ON_DUPKEY_INDEX提示,会忽略唯一
- 二叉树:堆
dieslrae
二叉树
这里说的堆其实是一个完全二叉树,每个节点都不小于自己的子节点,不要跟jvm的堆搞混了.由于是完全二叉树,可以用数组来构建.用数组构建树的规则很简单:
一个节点的父节点下标为: (当前下标 - 1)/2
一个节点的左节点下标为: 当前下标 * 2 + 1
&
- C语言学习八结构体
dcj3sjt126com
c
为什么需要结构体,看代码
# include <stdio.h>
struct Student //定义一个学生类型,里面有age, score, sex, 然后可以定义这个类型的变量
{
int age;
float score;
char sex;
}
int main(void)
{
struct Student st = {80, 66.6,
- centos安装golang
dcj3sjt126com
centos
#在国内镜像下载二进制包
wget -c http://www.golangtc.com/static/go/go1.4.1.linux-amd64.tar.gz
tar -C /usr/local -xzf go1.4.1.linux-amd64.tar.gz
#把golang的bin目录加入全局环境变量
cat >>/etc/profile<
- 10.性能优化-监控-MySQL慢查询
frank1234
性能优化MySQL慢查询
1.记录慢查询配置
show variables where variable_name like 'slow%' ; --查看默认日志路径
查询结果:--不用的机器可能不同
slow_query_log_file=/var/lib/mysql/centos-slow.log
修改mysqld配置文件:/usr /my.cnf[一般在/etc/my.cnf,本机在/user/my.cn
- Java父类取得子类类名
happyqing
javathis父类子类类名
在继承关系中,不管父类还是子类,这些类里面的this都代表了最终new出来的那个类的实例对象,所以在父类中你可以用this获取到子类的信息!
package com.urthinker.module.test;
import org.junit.Test;
abstract class BaseDao<T> {
public void
- Spring3.2新注解@ControllerAdvice
jinnianshilongnian
@Controller
@ControllerAdvice,是spring3.2提供的新注解,从名字上可以看出大体意思是控制器增强。让我们先看看@ControllerAdvice的实现:
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Component
public @interface Co
- Java spring mvc多数据源配置
liuxihope
spring
转自:http://www.itpub.net/thread-1906608-1-1.html
1、首先配置两个数据库
<bean id="dataSourceA" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close&quo
- 第12章 Ajax(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BW / Universe Mappings
blueoxygen
BO
BW Element
OLAP Universe Element
Cube Dimension
Class
Charateristic
A class with dimension and detail objects (Detail objects for key and desription)
Hi
- Java开发熟手该当心的11个错误
tomcat_oracle
java多线程工作单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 推行国产操作系统的优劣
yananay
windowslinux国产操作系统
最近刮起了一股风,就是去“国外货”。从应用程序开始,到基础的系统,数据库,现在已经刮到操作系统了。原因就是“棱镜计划”,使我们终于认识到了国外货的危害,开始重视起了信息安全。操作系统是计算机的灵魂。既然是灵魂,为了信息安全,那我们就自然要使用和推行国货。可是,一味地推行,是否就一定正确呢?
先说说信息安全。其实从很早以来大家就在讨论信息安全。很多年以前,就据传某世界级的网络设备制造商生产的交