python处理缺失数据、过滤,填补-----python进行数据分析

目录

处理缺失数据

滤除缺失数据

填补缺失数据


处理缺失数据

pandas的设计目标之一就是让缺失数据的处理任务更轻松,pandas使用浮点值NaN表示浮点数组和非浮点数组中的缺失数据,是一个便于被检测的标记

python内置的None也会被当作NA处理

from pandas import Series
>>> string_data = Series(['aardvark','artichoke',np.nan,'avocado'])
>>> string_data
0     aardvark
1    artichoke
2          NaN
3      avocado
dtype: object
>>> string_data.isnull()
0    False
1    False
2     True
3    False
dtype: bool
>>> string_data[0] = None
>>> string_data.isnull()
0     True
1    False
2     True
3    False

python处理缺失数据、过滤,填补-----python进行数据分析_第1张图片

滤除缺失数据

dropna返回一个仅含非空数据和索引值的Series.

>>> from numpy import nan as NA
>>> data = Series([1,NA,3.5,NA,7])
>>> data.dropna()
0    1.0
2    3.5
4    7.0
dtype: float64
>>> data = data[data.notnull()]
>>> data
0    1.0
2    3.5
4    7.0
dtype: float64

对于DataFrame对象,dropna默认丢弃含有缺失值的行

传入how=‘all’即可只丢弃值全为NA的那些行

再次传入axis=  1即可丢弃列

>>> data = DataFrame([[1.,6.5,3.],[1.,NA,NA],[NA,NA,NA],[NA,6.5,3.]])
>>> cleaned = data.dropna()
>>> data
     0    1    2
0  1.0  6.5  3.0
1  1.0  NaN  NaN
2  NaN  NaN  NaN
3  NaN  6.5  3.0
>>> cleaned
     0    1    2
0  1.0  6.5  3.0
>>> data.dropna(how='all')
     0    1    2
0  1.0  6.5  3.0
1  1.0  NaN  NaN
3  NaN  6.5  3.0
>>> data[4] = NA
>>> data.dropna(axis = 1,how='all')
     0    1    2
0  1.0  6.5  3.0
1  1.0  NaN  NaN
2  NaN  NaN  NaN
3  NaN  6.5  3.0

对于过滤时间序列数据,假如只需要与部分观测数据,可以用thresh参数实现目的

>>> df = DataFrame(np.random.randn(7,3))
>>> df.ix[:4,1] = NA;df.ix[:2,2] = NA
>>> df
          0         1         2
0 -0.470646       NaN       NaN
1  0.650343       NaN       NaN
2  0.616738       NaN       NaN
3 -0.244354       NaN  0.863931
4 -0.063218       NaN  0.978948
5  0.145755  0.630745  1.120421
6 -0.111001  0.322309 -0.860522
>>> df.dropna(thresh = 3)
          0         1         2
5  0.145755  0.630745  1.120421
6 -0.111001  0.322309 -0.860522
>>> df.dropna(thresh = 2)
          0         1         2
3 -0.244354       NaN  0.863931
4 -0.063218       NaN  0.978948
5  0.145755  0.630745  1.120421
6 -0.111001  0.322309 -0.860522
>>> df.dropna(thresh = 1)
          0         1         2
0 -0.470646       NaN       NaN
1  0.650343       NaN       NaN
2  0.616738       NaN       NaN
3 -0.244354       NaN  0.863931
4 -0.063218       NaN  0.978948
5  0.145755  0.630745  1.120421
6 -0.111001  0.322309 -0.860522
>>> df.dropna(thresh = 0)
          0         1         2
0 -0.470646       NaN       NaN
1  0.650343       NaN       NaN
2  0.616738       NaN       NaN
3 -0.244354       NaN  0.863931
4 -0.063218       NaN  0.978948
5  0.145755  0.630745  1.120421
6 -0.111001  0.322309 -0.860522

填补缺失数据

通常·使用fillna函数将缺失值替换为常数值

>>> df.fillna(0)
          0         1         2
0 -0.470646  0.000000  0.000000
1  0.650343  0.000000  0.000000
2  0.616738  0.000000  0.000000
3 -0.244354  0.000000  0.863931
4 -0.063218  0.000000  0.978948
5  0.145755  0.630745  1.120421
6 -0.111001  0.322309 -0.860522
>>> df.fillna({1:0.5,2:-1})
          0         1         2
0 -0.470646  0.500000 -1.000000
1  0.650343  0.500000 -1.000000
2  0.616738  0.500000 -1.000000
3 -0.244354  0.500000  0.863931
4 -0.063218  0.500000  0.978948
5  0.145755  0.630745  1.120421
6 -0.111001  0.322309 -0.860522

fillna会默认返回新对象,但也可以通过设置修改现有对象

>>> _ = df.fillna(0,inplace=True)
>>> df
          0         1         2
0 -0.470646  0.000000  0.000000
1  0.650343  0.000000  0.000000
2  0.616738  0.000000  0.000000
3 -0.244354  0.000000  0.863931
4 -0.063218  0.000000  0.978948
5  0.145755  0.630745  1.120421
6 -0.111001  0.322309 -0.860522

对reindex有效的那些方法也可以用于fillna:

>>> df = DataFrame(np.random.randn(6,3))
>>> df.ix[2:,1] = NA;df.ix[4:,2] = NA
>>> df
          0         1         2
0 -0.829840 -2.290885  0.258595
1  0.774171 -2.287114  0.873521
2  0.601178       NaN -0.660464
3  0.775981       NaN -1.640218
4 -1.792551       NaN       NaN
5  0.411994       NaN       NaN
>>> df.fillna(method = 'ffill')
          0         1         2
0 -0.829840 -2.290885  0.258595
1  0.774171 -2.287114  0.873521
2  0.601178 -2.287114 -0.660464
3  0.775981 -2.287114 -1.640218
4 -1.792551 -2.287114 -1.640218
5  0.411994 -2.287114 -1.640218
>>> df.fillna(method = 'ffill',limit = 2)
          0         1         2
0 -0.829840 -2.290885  0.258595
1  0.774171 -2.287114  0.873521
2  0.601178 -2.287114 -0.660464
3  0.775981 -2.287114 -1.640218
4 -1.792551       NaN -1.640218
5  0.411994       NaN -1.640218
>>> df.fillna(method = 'ffill',limit = 1)
          0         1         2
0 -0.829840 -2.290885  0.258595
1  0.774171 -2.287114  0.873521
2  0.601178 -2.287114 -0.660464
3  0.775981       NaN -1.640218
4 -1.792551       NaN -1.640218
5  0.411994       NaN       NaN

用每一列平均数填补

>>> df.fillna(df.mean())
          0         1         2
0 -0.829840 -2.290885  0.258595
1  0.774171 -2.287114  0.873521
2  0.601178 -2.288999 -0.660464
3  0.775981 -2.288999 -1.640218
4 -1.792551 -2.288999 -0.292142
5  0.411994 -2.288999 -0.292142

python处理缺失数据、过滤,填补-----python进行数据分析_第2张图片

python处理缺失数据、过滤,填补-----python进行数据分析_第3张图片

你可能感兴趣的:(数据清洗,python进行数据分析)