- 易 AI - 使用 TensorFlow 2 Keras 实现 AlexNet CNN 架构
CatchZeng
原文:https://makeoptim.com/deep-learning/yiai-alexnet-implementation前言网络结构实现SequentialSubclassingDemo小结参考前言上一篇笔者使用如何阅读深度学习论文的方法阅读了AlexNet。为了加深理解,本文带大家使用TensorFlow2Keras实现AlexNetCNN架构。网络结构image从上一篇可以得到Al
- 论文学习记录之Deep-learning seismic full-waveform inversion for realistic structuralmodels
摘星星的屋顶
论文深度学习人工智能
一、ABSTRACT—摘要标题:Deep-learningseismicfull-waveforminversionforrealisticstructuralmodels(用于真实结构模型的深度学习地震全波形反演)作者:BinLiu1,SenlinYang2,YuxiaoRen2,XinjiXu3,PengJiang2,andYangkangChen4(和SeisInvNet有共同作者,应该是同
- 论文学习记录之SeisInvNet(Deep-Learning Inversion of Seismic Data)
摘星星的屋顶
论文人工智能
目录1INTRODUCTION—介绍2RELATEDWORKS—相关作品3METHODOLOGYANDIMPLEMENTATION—方法和执行3.1方法3.2执行4EXPERIMENTS—实验4.1数据集准备4.2实验设置4.3基线模型4.4定向比较4.5定量比较4.6机理研究5CONCLUSION—结论1INTRODUCTION—介绍地震勘探是根据地震波在大地中的传播规律来确定地下地层结构的一种
- 易 AI - 机器学习计算机视觉基础
CatchZeng
原文:http://makeoptim.com/deep-learning/yiai-cv计算机视觉表达黑白图灰度图彩色图操作卷积均值滤波归一化统一量纲加速模型训练梯度下降GPU浮点运算小结参考链接上一篇讲解了机器学习数据集的概念以及如何收集图片数据集。收集到的数据是被训练的对象,那么怎么表示这些数据呢?数据又需要被怎么操作呢?本文为大家讲解计算机视觉基础,帮助大家在后面的课程中更好地理解和训练模
- 【Pytorch】Transposed Convolution
bryant_meng
pytorch人工智能python反卷积逆卷积
文章目录1卷积2反/逆卷积3MaxUnpool/ConvTranspose4encoder-decoder5可视化学习参考来自:详解逆卷积操作–Up-samplingwithTransposedConvolutionPyTorch使用记录https://github.com/naokishibuya/deep-learning/blob/master/python/transposed_convo
- 2-EagleC: A deep-learning framework for detecting a full range of structural variations from bulk...
怎么不是呐
Hi-C技术:检测人类基因组结构变异(SVs)的一种有前景的方法。目前严重缺乏能够使用Hi-C数据进行全范围SV检测的算法,只能以低于最佳的分辨率识别染色体间易位和远程染色体内SVs(>1mb)。本文开发了一个深度学习模型,结合了深度学习和集成学习策略的框架,以高分辨率预测全范围的SVs——EagleC在癌症基因组中认识了许多先前未知的融合事件,也发掘了已知致癌基因的新型调控机制,这些发现为癌症分
- 用数据玩点花样!如何构建skim-gram模型来训练和可视化词向量
机器之心V
php人工智能
本文介绍了如何在TensorFlow中实现skim-gram模型,并用TensorBoard进行可视化。GitHub地址:https://github.com/priya-dwivedi/Deep-Learning/blob/master/word2vec_skipgram/Skip-Grams-Solution.ipynb本教程将展示如何在TensorFlow中实现skim-gram模型,以便为
- Deep-learning
斗战胜佛oh
图卷积网络在药物研发中的应用综述尽管深度学习在很多领域在过去的几年取得了一定的成功,但是在分子信息和药物发现领域成功的应用依然有限。适用于深层架构的结构化数据方面的最新进展为药物研究开辟了新的范例。该篇从四个角度阐述了图神经网络在药物发现和分子信息领域的应用。1)分子属性和活性预测;2)相互作用预测;3)合成预测;4)从头药物设计。最后总结了药物相关问题的代表性应用。讨论将图卷积网络应用于药物发现
- 用BERT进行机器阅读理解
javastart
自然语言
这里可以找到带有代码的Github存储库:https://github.com/edwardcqian/bert_QA。本文将讨论如何设置此项功能.机器(阅读)理解是NLP的领域,我们使用非结构化文本教机器理解和回答问题。https://www.coursera.org/specializations/deep-learning?ranMID=40328&ranEAID=J2RDoRlzkk&ra
- 停车场车位检测思路梳理
杂七杂八的
输入列表图像,在工具台中输出图像defshow_images(self,images,cmap=None):输入的是某一张图片和给图片的name,make_write表示是否需要yyyyafafaffadfsfgf10.fhttps://github.com/priya-dwivedi/Deep-Learning/tree/master/parking_spots_detector/train_d
- AI - Ubuntu 机器学习环境 (TensorFlow GPU, JupyterLab, VSCode)
CatchZeng
原文:https://makeoptim.com/deep-learning/tensorflow-gpu-on-ubuntu介绍所需软件安装前GCCNVIDIApackagerepositoriesNVIDIAmachinelearningNVIDIAGPUdriverCUDAToolKitandcuDNNTensorRTMiniconda虚拟环境安装TensorFlow安装JupyterLab
- deep-learning(1) - 随手记录的知识点
Laniakea_01d0
业界通常认为第一层是隐藏层的第一层AI会遇上工程类问题Padding补零操作,可以保证卷积核在每块区域都进行卷积,迭代次数越多,更有效果,提取特征更好生成器和迭代器,存在的意义,一般我们需要对一个数组进行操作的时候,我们要遍历出来操作,比如一亿个参数,我们不可能一次性全部取出来,一个一个的去取,这就是生成器存在的意义。Dataloader加载数据到内存Next(iter(a))转换成0,1转换成正
- 易 AI - AlexNet 论文深度讲解
CatchZeng
原文:https://makeoptim.com/deep-learning/yiai-paper-alexnet论文地址阅读方式ImageNetClassificationwithDeepConvolutionalNeuralNetworks使用深度卷积神经网络的ImageNet分类Abstract摘要1Introduction1简介2TheDataset2数据集3TheArchitecture
- AI - Mac M1 机器学习环境 (TensorFlow, JupyterLab, VSCode)
CatchZeng
原文https://makeoptim.com/deep-learning/mac-m1-tensorflowXcodeCommandLineToolsHomebrewMiniforge下载AppleTensorFlow创建虚拟环境安装必须的包安装特殊版本的pip和其他包安装Apple提供的包(numpy,grpcio,h5py)安装额外的包安装TensorFlow测试JupyterLabVSCo
- 易 AI - 机器学习卷积神经网络(CNN)
CatchZeng
原文:http://makeoptim.com/deep-learning/yiai-cnn卷积神经网络结构输入层隐藏层输出层TensorFlow中定义卷积神经网络模型宏观理解卷积神经网络全连接采样卷积小结上一篇介绍了如何在TensorFlow中加载数据集。从本文开始将以王者荣耀为例,介绍卷积神经网络(CNN)。由于涉及的内容较多,本文主要先介绍以下内容:卷积神经网络结构TensorFlow中定义
- 易 AI - 使用 TensorFlow Object Detection API 训练自定义目标检测模型
CatchZeng
原文:https://makeoptim.com/deep-learning/yiai-object-detection前言目标检测位置发展史传统方法(候选区域+手工特征提取+分类器)RegionProposal+CNN(Two-stage)端到端(One-stage)TensorFlowObjectDetectionAPI安装依赖项安装API工程创建数据集图片标注创建TFRecord模型训练下载
- AI - Mac 机器学习环境 (TensorFlow, JupyterLab, VSCode)
CatchZeng
原文:https://makeoptim.com/deep-learning/mac-tensorflowCondaAnacondaMiniconda创建虚拟环境安装tensorflow检查安装JupyterLab启动安装其他依赖JupyterLab运行tensorflow安装VSCodeVSCode运行tensorflow小结延伸阅读在MacM1机器学习环境讲述了如何在M1芯片的Mac搭建机器学
- NLP(新闻文本分类)——数据读取与数据分析
浩波的笔记
NLP机器学习pythonnlp
初始数据importpandasaspddf_train=pd.read_csv('E:/python-project/deep-learning/datawhale/nlp/news-data/train_set.csv/train_set.csv',sep='\t')df_test=pd.read_csv('E:/python-project/deep-learning/datawhale/n
- AI - Apple Silicon Mac M1 原生支持 TensorFlow 2.6 GPU 加速(tensorflow-metal PluggableDevice)
CatchZeng
原文:http://makeoptim.com/deep-learning/tensorflow-metal前言系统要求当前不支持XcodeCommandLineToolsHomebrewMiniforge创建虚拟环境安装Tensorflowdependencies首次安装升级安装安装Tensorflow安装metalplugin安装必须的包测试JupyterLabVSCode延伸阅读参考前言几天
- 易 AI - ResNet 论文深度讲解
CatchZeng
原文:https://makeoptim.com/deep-learning/yiai-paper-resnet论文地址阅读方式DeepResidualLearningforImageRecognition图像识别的深度残差学习Abstract摘要1Introduction1简介2RelatedWork2相关工作3.DeepResidualLearning3.深度残差学习3.1.ResidualL
- Windows安装PyTorch-CPU
Ann剑
安装PyTorchpytorchwindowspython
看了好多大佬的教程,终于给自己老旧电脑成功安装了PyTorch本电脑安装的软件PyTorch=1.12.1anaconda版本为conda4.8.2(anaconda自行安装)开始前以管理员方式运行anacondaprompt一、安装PyTorch一、安装PyTorch(1)创建环境为deep-learning,也可以为PyTorch(就是一个名字)。指定Python版本condacreate-n
- transformer(Bert)的多头注意力对每一个head进行降维的分析
想赚钱的雷大
背景:在用keras的multiattention模块做实验的时候,发现学习参数随着头数的增多而增多,与transformer中的实现不太一致结果:本着想了解透彻的思路去网上搜索了一番,第一篇我就觉得整理的不错,附上链接:http://www.sniper97.cn/index.php/note/deep-learning/note-deep-learning/4002/总结一下:一言蔽之的话,大
- nvidia 3060 + cuda + cudnn + tf
代码&诗
tensorflowpython深度学习
参考:https://eipi10.cn/deep-learning/2019/11/28/centos_cuda_cudnn/1.环境版本:CentOSLinuxrelease7.8.2003(Core)Tensorflow-gpu2.5nvidia3060cuda11.2.2cudnn-11.32.环境检查:lscpi|grep-invidia#要有nvidia设备3.首先安装nvidia-3
- identifier “THCudaCheck“ is undefined 的解决方法
莫说相公痴
MachineLearningPythonPytorch深度学习pytorch人工智能
THCudaCheck在pytorch1.11.0版本被移除了,可以看文档https://www.exxactcorp.com/blog/Deep-Learning/pytorch-1-11-0-now-available解决方法是将THCudaCheck替换成C10_CUDA_CHECK
- 交通事故预测—《Traffic Accident’s Severity Prediction: A Deep-Learning Approach-Based CNN Network》
永恒的记忆2019
科研论文python机器学习人工智能
一、文章信息《TrafficAccident’sSeverityPrediction:ADeep-LearningApproach-BasedCNNNetwork》,2019年Access上的一篇文章。二、摘要基于交通事故特征的权重,提出了基于特征矩阵的灰色图像(FM2GI)算法,将交通事故数据的单一特征关系转换为包含并行组合关系的灰色图像作为模型的输入变量,网络模型是基于CNN。(也就是说这篇文
- 通过 MQTT 检测对象和传输图像
woshicver
pythonopencvvnccvopengl
在本文中,我们将学习如何使用open-cv和YOLO对象检测器每五秒捕获/保存和检测图像中的对象。然后我们将图像转换为字节数组并通过MQTT发布,这将在另一个远程设备上接收并保存为JPG。我们将使用YoloV3算法和一个免费的MQTT代理YoloV3算法:https://viso.ai/deep-learning/yolov3-overview/#:~:text=What's%20Next%3F-
- DNN(Deep-Learning Neural Network)
sherlock31415931
ML神经网络深度学习人工智能tensorflownumpy
DNN(Deep-LearningNeuralNetwork)接下来介绍比较常见的全连接层网络(fully-connectedfeedfowardneruralnetwork)名词解释首先介绍一下神经网络的基本架构,以一个神经元为例输入是一个向量,权重(weights)也是一个矩阵把两个矩阵进行相乘,最后加上偏差(bias),即w1*x1+w2*x2+b神经元里面会有一个激活函数(activati
- AlexNet详解
tt丫
深度学习人工智能深度学习神经网络AlexNet
入门小菜鸟,希望像做笔记记录自己学的东西,也希望能帮助到同样入门的人,更希望大佬们帮忙纠错啦~侵权立删。✨完整代码在我的github上,有需要的朋友可以康康✨GitHub-tt-s-t/Deep-Learning:Storesomeofyourownin-depthlearningcode,whichiscurrentlyintheupdatestage.Thecontentcovers:each
- 论文解读:ProteinBERT: a universal deep-learning model of protein sequence and function
wangpan007
生信论文神经网络python编程深度学习神经网络python
目录1.研究背景2.研究数据2.1预训练的蛋白质数据集2.2蛋白质基准数据集3.研究方法3.1序列和标注编码3.2蛋白质序列和注释的自我监督预训练3.3对蛋白质基准进行监督微调3.4深度学习框架4.结果4.1预训练可以改善蛋白质模型4.2ProteinBERT在不同的蛋白质基准上达到了近乎最先进的结果4.4全局注意力机制的理解5.结论作者单位:耶路撒冷希伯来大学发表期刊:《Bioinformati
- 【U-Net2015】U-Net: Convolutional Networks for Biomedical Image Segmentation mage Segmentation
不会声调的博er
深度学习caffe计算机视觉
U-Net:ConvolutionalNetworksforBiomedicalmageSegmentation生物医学图像语义分割的卷积神经网络arXiv:1505.04597v1[cs.CV]18May2015文章地址:https://arxiv.org/abs/1505.04597代码地址:https://github.com/Jack-Cherish/Deep-Learning/tree/
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1