// ListAccounts will return a list of addresses for accounts this node manages.
func (s *PrivateAccountAPI) ListAccounts() []common.Address {
addresses := make([]common.Address, 0) // return [] instead of nil if empty
for _, wallet := range s.am.Wallets() {
for _, account := range wallet.Accounts() {
addresses = append(addresses, account.Address)
}
}
return addresses
}
通过accounts/account/下的Wallets钱包管理,遍历钱包中存储的账户,将addresses数组返回控制台
在core/types/tracsaction.go文件下的Transaction结构体
type Transaction struct {
data txdata
// caches
hash atomic.Value
size atomic.Value
from atomic.Value
}
hash:交易的hash
size:交易数据的大小
from:发起交易的地址
data:交易数据
type txdata struct {
AccountNonce uint64 `json:"nonce" gencodec:"required"`
Price *big.Int `json:"gasPrice" gencodec:"required"`
GasLimit uint64 `json:"gas" gencodec:"required"`
Recipient *common.Address `json:"to" rlp:"nil"` // nil means contract creation
Amount *big.Int `json:"value" gencodec:"required"`
Payload []byte `json:"input" gencodec:"required"`
// Signature values
V *big.Int `json:"v" gencodec:"required"`
R *big.Int `json:"r" gencodec:"required"`
S *big.Int `json:"s" gencodec:"required"`
// This is only used when marshaling to JSON.
Hash *common.Hash `json:"hash" rlp:"-"`
}
AccountNonce:发起者发起的交易总数量
Price:此次交易的gas 价格
GasLimit:此次交易允许消耗的最大gas数
Recipient:交易接收者的地址
Amount:此次交易的以太币数量
Payload:对应的虚拟机指令
V:签名数据
R:签名数据
S:签名数据
SendTxArgs:交易的一些参数
type SendTxArgs struct {
From common.Address `json:"from"`
To *common.Address `json:"to"`
Gas *hexutil.Uint64 `json:"gas"`
GasPrice *hexutil.Big `json:"gasPrice"`
Value *hexutil.Big `json:"value"`
Nonce *hexutil.Uint64 `json:"nonce"`
// We accept "data" and "input" for backwards-compatibility reasons. "input" is the
// newer name and should be preferred by clients.
Data *hexutil.Bytes `json:"data"`
Input *hexutil.Bytes `json:"input"`
}
sendTransaction经过RPC调用后,会调用internal/ethapi/api.go中的sendTransaction方法
// SendTransaction为给定的参数创建一个事务,签名并提交给事务池
func (s *PublicTransactionPoolAPI) SendTransaction(ctx context.Context, args SendTxArgs) (common.Hash, error) {
//通过From地址构造一个account
// Look up the wallet containing the requested signer
account := accounts.Account{Address: args.From}
//调用账户管理器获得该account的钱包,Find方法会从账户管理系统中对钱包进行遍历,找到包含这个 //account的钱包
wallet, err := s.b.AccountManager().Find(account)
if err != nil {
return common.Hash{}, err
}
if args.Nonce == nil {
//保持地址的互斥锁在签名附近,以防止并发分配同样的方法可以多次使用
//对于每一个账户,nonce会随着转账的增加而增加,以防止双花攻击
// Hold the addresse's mutex around signing to prevent concurrent assignment of
// the same nonce to multiple accounts.
s.nonceLock.LockAddr(args.From)
defer s.nonceLock.UnlockAddr(args.From)
}
//设置交易参数的默认值
// Set some sanity defaults and terminate on failure
if err := args.setDefaults(ctx, s.b); err != nil {
return common.Hash{}, err
}
//利用toTransaction方法创建一笔交易
// Assemble the transaction and sign with the wallet
tx := args.toTransaction()
//此时我们已经创建好了一笔交易,接着我们获取区块链的配置信息,检查是否是EIP155的配置,并获取链ID。
var chainID *big.Int
if config := s.b.ChainConfig(); config.IsEIP155(s.b.CurrentBlock().Number()) {
chainID = config.ChainID
}
//对交易进行签名 参数是账户,交易信息 ,链ID
signed, err := wallet.SignTx(account, tx, chainID)
if err != nil {
return common.Hash{}, err
}
return submitTransaction(ctx, s.b, signed)
}
Find方法会从账户管理系统中对钱包进行遍历,找到包含这个account的钱包
func (am *Manager) Find(account Account) (Wallet, error) {
//将当前的账户管理器进行读锁
am.lock.RLock()
//调用栈结束解锁
defer am.lock.RUnlock()
//遍历账户管理器的所有钱包
for _, wallet := range am.wallets {
//找到这个account对应的钱包
if wallet.Contains(account) {
//返回找到的钱包
return wallet, nil
}
}
//没有找到返回对应错误
return nil, ErrUnknownAccount
}
获得钱包以后对交易参数中的账户nonce进行上锁,以防止双花攻击,然后调用setDefaults方法对交易参数设置一些默认参数值
func (args *SendTxArgs) setDefaults(ctx context.Context, b Backend) error {
//参数中Gas是否为空
if args.Gas == nil {
//为空设置默认值
args.Gas = new(hexutil.Uint64)
*(*uint64)(args.Gas) = 90000
}
//参数中GasPrice是否为空
if args.GasPrice == nil {
//获取建议的市场价格
price, err := b.SuggestPrice(ctx)
if err != nil {
return err
}
//设置价格
args.GasPrice = (*hexutil.Big)(price)
}
//参数中Value是否为空
if args.Value == nil {
args.Value = new(hexutil.Big)
}
//参数中Nonce是否为空
if args.Nonce == nil {
//通过账户获取账户的nonce
nonce, err := b.GetPoolNonce(ctx, args.From)
if err != nil {
return err
}
//设置nonce
args.Nonce = (*hexutil.Uint64)(&nonce)
}
if args.Data != nil && args.Input != nil && !bytes.Equal(*args.Data, *args.Input) {
return errors.New(`Both "data" and "input" are set and not equal. Please use "input" to pass transaction call data.`)
}
//如果参数中To为空
if args.To == nil {
// Contract creation
var input []byte
if args.Data != nil {
input = *args.Data
} else if args.Input != nil {
input = *args.Input
}
if len(input) == 0 {
return errors.New(`contract creation without any data provided`)
}
}
return nil
}
toTransaction方法使用SendTxArgs参数创建一笔交易,将新的交易信息返回
func (args *SendTxArgs) toTransaction() *types.Transaction {
//一个字节数组
var input []byte
//如果参数Data不为空
if args.Data != nil {
//字节数组的值=Data
input = *args.Data
//如果参数Input不为空
} else if args.Input != nil {
//字节数组的值=Input
input = *args.Input
}
//这里会对传入的交易信息的to参数进行判断。如果没有to值,那么这是一笔合约转账;而如果有to值,那么就 是发起的一笔转账。最终,代码会调用NewTransaction创建一笔交易信息
if args.To == nil {
return types.NewContractCreation(uint64(*args.Nonce), (*big.Int)(args.Value), uint64(*args.Gas), (*big.Int)(args.GasPrice), input)
}
return types.NewTransaction(uint64(*args.Nonce), *args.To, (*big.Int)(args.Value), uint64(*args.Gas), (*big.Int)(args.GasPrice), input)
}
事实上NewContractCreation也是调用newTransaction,知识to参数为nil
func NewContractCreation(nonce uint64, amount *big.Int, gasLimit uint64, gasPrice *big.Int, data []byte) *Transaction {
return newTransaction(nonce, nil, amount, gasLimit, gasPrice, data)
}
通过newTransaction构建一个完整的Transaction交易数据结构,将数据机构返回
func newTransaction(nonce uint64, to *common.Address, amount *big.Int, gasLimit uint64, gasPrice *big.Int, data []byte) *Transaction {
if len(data) > 0 {
data = common.CopyBytes(data)
}
d := txdata{
AccountNonce: nonce,
Recipient: to,
Payload: data,
Amount: new(big.Int),
GasLimit: gasLimit,
Price: new(big.Int),
V: new(big.Int),
R: new(big.Int),
S: new(big.Int),
}
if amount != nil {
d.Amount.Set(amount)
}
if gasPrice != nil {
d.Price.Set(gasPrice)
}
return &Transaction{data: d}
}
这里就是填充了交易结构体中的一些参数,来创建一个交易。到这里,一笔交易就已经创建成功了。
回到sendTransaction方法中,此时我们已经创建好了一笔交易,接着我们获取区块链的配置信息,检查是否是EIP155的配置,并获取链ID。
//获取链的一些配置信息
type ChainConfig struct {
ChainID *big.Int `json:"chainId"` // chainId identifies the current chain and is used for replay protection
HomesteadBlock *big.Int `json:"homesteadBlock,omitempty"` // Homestead switch block (nil = no fork, 0 = already homestead)
DAOForkBlock *big.Int `json:"daoForkBlock,omitempty"` // TheDAO hard-fork switch block (nil = no fork)
DAOForkSupport bool `json:"daoForkSupport,omitempty"` // Whether the nodes supports or opposes the DAO hard-fork
// EIP150 implements the Gas price changes (https://github.com/ethereum/EIPs/issues/150)
EIP150Block *big.Int `json:"eip150Block,omitempty"` // EIP150 HF block (nil = no fork)
EIP150Hash common.Hash `json:"eip150Hash,omitempty"` // EIP150 HF hash (needed for header only clients as only gas pricing changed)
EIP155Block *big.Int `json:"eip155Block,omitempty"` // EIP155 HF block
EIP158Block *big.Int `json:"eip158Block,omitempty"` // EIP158 HF block
ByzantiumBlock *big.Int `json:"byzantiumBlock,omitempty"` // Byzantium switch block (nil = no fork, 0 = already on byzantium)
ConstantinopleBlock *big.Int `json:"constantinopleBlock,omitempty"` // Constantinople switch block (nil = no fork, 0 = already activated)
EWASMBlock *big.Int `json:"ewasmBlock,omitempty"` // EWASM switch block (nil = no fork, 0 = already activated)
// Various consensus engines
Ethash *EthashConfig `json:"ethash,omitempty"`
Clique *CliqueConfig `json:"clique,omitempty"`
}
为了保证交易的真实有效,我们需要对交易进行签名,调用SingTx方法对交易签名
func (ks *KeyStore) SignTx(account *Account, tx *Transaction, chainID *BigInt) (*Transaction, error) {
if chainID == nil { // Null passed from mobile app
chainID = new(BigInt)
}
signed, err := ks.keystore.SignTx(account.account, tx.tx, chainID.bigint)
if err != nil {
return nil, err
}
//返回签名后的交易信息
return &Transaction{signed}, nil
}
回到sendTransaction方法中这个时候需要提交交易,调用submitTransaction方法会将交易发送给backend进行处理,返回经过签名后的交易的hash值。这里主要是SendTx方法对交易进行处理。
sendTx方法会将参数转给txpool的Addlocal方法进行处理,而AddLocal方法会将该笔交易放入到交易池中进行等待。这里我们看将交易放入到交易池中的方法。
func submitTransaction(ctx context.Context, b Backend, tx *types.Transaction) (common.Hash, error) {
if err := b.SendTx(ctx, tx); err != nil {
return common.Hash{}, err
}
if tx.To() == nil {
signer := types.MakeSigner(b.ChainConfig(), b.CurrentBlock().Number())
from, err := types.Sender(signer, tx)
if err != nil {
return common.Hash{}, err
}
addr := crypto.CreateAddress(from, tx.Nonce())
log.Info("Submitted contract creation", "fullhash", tx.Hash().Hex(), "contract", addr.Hex())
} else {
log.Info("Submitted transaction", "fullhash", tx.Hash().Hex(), "recipient", tx.To())
}
return tx.Hash(), nil
}
func (b *EthAPIBackend) SendTx(ctx context.Context, signedTx *types.Transaction) error {
return b.eth.txPool.AddLocal(signedTx)
}
func (pool *TxPool) AddLocal(tx *types.Transaction) error {
return pool.addTx(tx, !pool.config.NoLocals)
}
func (pool *TxPool) addTx(tx *types.Transaction, local bool) error {
pool.mu.Lock()
defer pool.mu.Unlock()
// Try to inject the transaction and update any state
replace, err := pool.add(tx, local)
if err != nil {
return err
}
// If we added a new transaction, run promotion checks and return
if !replace {
from, _ := types.Sender(pool.signer, tx) // already validated
pool.promoteExecutables([]common.Address{from})
}
return nil
}
这里一共有两部操作,第一步操作是调用add方法将交易放入到交易池中,第二步是判断replace参数。如果该笔交易合法并且交易原来不存在在交易池中,则执行promoteExecutables方法,将可处理的交易变为待处理(pending)。
首先看第一步add方法。
func (pool *TxPool) add(tx *types.Transaction, local bool) (bool, error) {
// If the transaction is already known, discard it
hash := tx.Hash()
//判断这个交易hash有么有在交易池中,如果交易池中有这笔交易则返回报错
if pool.all.Get(hash) != nil {
log.Trace("Discarding already known transaction", "hash", hash)
return false, fmt.Errorf("known transaction: %x", hash)
}
//调用validateTx判断交易是否合法,如果不合法则返回报错
// If the transaction fails basic validation, discard it
if err := pool.validateTx(tx, local); err != nil {
log.Trace("Discarding invalid transaction", "hash", hash, "err", err)
invalidTxCounter.Inc(1)
return false, err
}
//判断交易池是否超过容量
// If the transaction pool is full, discard underpriced transactions
if uint64(pool.all.Count()) >= pool.config.GlobalSlots+pool.config.GlobalQueue {
// If the new transaction is underpriced, don't accept it
//如果超过容量,并且该笔交易的费用低于当前交易池中列表的最小值,则拒绝这一笔交易
if !local && pool.priced.Underpriced(tx, pool.locals) {
log.Trace("Discarding underpriced transaction", "hash", hash, "price", tx.GasPrice())
underpricedTxCounter.Inc(1)
return false, ErrUnderpriced
}
//如果超过容量,并且该笔交易的费用比当前交易池中列表最小值高,那么从交易池中移除交易费用最低的交易,为当前这一笔交易留出空间。
// New transaction is better than our worse ones, make room for it
drop := pool.priced.Discard(pool.all.Count()-int(pool.config.GlobalSlots+pool.config.GlobalQueue-1), pool.locals)
for _, tx := range drop {
log.Trace("Discarding freshly underpriced transaction", "hash", tx.Hash(), "price", tx.GasPrice())
underpricedTxCounter.Inc(1)
pool.removeTx(tx.Hash(), false)
}
}
//如果事务正在替换一个已经挂起的事务,请直接执行
// If the transaction is replacing an already pending one, do directly
from, _ := types.Sender(pool.signer, tx) // already validated
//接着继续调用Overlaps方法检查该笔交易的Nonce值,确认该用户下的交易是否存在该笔交易
if list := pool.pending[from]; list != nil && list.Overlaps(tx) {
// Nonce already pending, check if required price bump is met
inserted, old := list.Add(tx, pool.config.PriceBump)
// 如果已经存在这笔交易,则删除之前的交易,并将该笔交易放入交易池中,然后返回。
if !inserted {
pendingDiscardCounter.Inc(1)
return false, ErrReplaceUnderpriced
}
// New transaction is better, replace old one
if old != nil {
pool.all.Remove(old.Hash())
pool.priced.Removed()
pendingReplaceCounter.Inc(1)
}
//在池里添加新的交易信息
pool.all.Add(tx)
//添加新交易的价格
pool.priced.Put(tx)
//将交易信息写到日志中,只有是在本地账户的情况下
pool.journalTx(from, tx)
log.Trace("Pooled new executable transaction", "hash", hash, "from", from, "to", tx.To())
// We've directly injected a replacement transaction, notify subsystems
go pool.txFeed.Send(NewTxsEvent{types.Transactions{tx}})
return old != nil, nil
}
//如果不存在,则调用enqueueTx将该笔交易放入交易池中。如果交易是本地发出的,则将发送者保存在交易池的local中
// New transaction isn't replacing a pending one, push into queue
replace, err := pool.enqueueTx(hash, tx)
if err != nil {
return false, err
}
//标记本地地址并记录本地事务
// Mark local addresses and journal local transactions
if local {
if !pool.locals.contains(from) {
log.Info("Setting new local account", "address", from)
pool.locals.add(from)
}
}
//记录本地账户的事务交易信息
pool.journalTx(from, tx)
log.Trace("Pooled new future transaction", "hash", hash, "from", from, "to", tx.To())
return replace, nil
}
总结:add方法执行流程
1.判断这个交易hash有么有在交易池中,如果交易池中有这笔交易则返回报错
2.调用validateTx判断交易是否合法,如果不合法则返回报错
3.判断交易池是否超过容量
4.如果超过容量,并且该笔交易的费用低于当前交易池中列表的最小值,则拒绝这一笔交易
5.如果超过容量,并且该笔交易的费用比当前交易池中列表最小值高,那么从交易池中移除交易费用最低的交易,为当前这一笔交易留出空间。
6.接着继续调用Overlaps方法检查该笔交易的Nonce值,确认该用户下的交易是否存在该笔交易
7.如果已经存在这笔交易,则删除之前的交易,并将该笔交易放入交易池中,然后返回。
8.如果不存在,则调用enqueueTx将该笔交易放入交易池中。如果交易是本地发出的,则将发送者保存在交易池的local中
9.返回执行结果 true /false和错误信息
validateTx方法执行的逻辑
func (pool *TxPool) validateTx(tx *types.Transaction, local bool) error {
// Heuristic limit, reject transactions over 32KB to prevent DOS attacks
if tx.Size() > 32*1024 {
return ErrOversizedData
}
// Transactions can't be negative. This may never happen using RLP decoded
// transactions but may occur if you create a transaction using the RPC.
if tx.Value().Sign() < 0 {
return ErrNegativeValue
}
// Ensure the transaction doesn't exceed the current block limit gas.
if pool.currentMaxGas < tx.Gas() {
return ErrGasLimit
}
// Make sure the transaction is signed properly
from, err := types.Sender(pool.signer, tx)
if err != nil {
return ErrInvalidSender
}
// Drop non-local transactions under our own minimal accepted gas price
local = local || pool.locals.contains(from) // account may be local even if the transaction arrived from the network
if !local && pool.gasPrice.Cmp(tx.GasPrice()) > 0 {
return ErrUnderpriced
}
// Ensure the transaction adheres to nonce ordering
if pool.currentState.GetNonce(from) > tx.Nonce() {
return ErrNonceTooLow
}
// Transactor should have enough funds to cover the costs
// cost == V + GP * GL
if pool.currentState.GetBalance(from).Cmp(tx.Cost()) < 0 {
return ErrInsufficientFunds
}
intrGas, err := IntrinsicGas(tx.Data(), tx.To() == nil, pool.homestead)
if err != nil {
return err
}
if tx.Gas() < intrGas {
return ErrIntrinsicGas
}
return nil
}
validateTx会验证一笔交易的以下几个特性:
1.首先验证这笔交易的大小,如果大于32kb则拒绝这笔交易,这样主要是为了防止DDOS攻击。
2.接着验证转账金额。如果金额小于0则拒绝这笔交易。
3.这笔交易的gas不能超过交易池的gas上限。
4.验证这笔交易的签名是否合法。
5.如果这笔交易不是来自本地并且这笔交易的gas小于当前交易池中的gas,则拒绝这笔交易。
6.当前用户的nonce如果大于这笔交易的nonce,则拒绝这笔交易。
7.当前用户的余额是否充足,如果不充足则拒绝该笔交易。
8.验证这笔交易的固有花费,如果小于交易池的gas,则拒绝该笔交易。
以上就是在进行交易验证时所需验证的参数。这一系列的验证操作结束后,回到addTx的第二步。
会判断replace。如果replace是false,则会执行promoteExecutables方法。
func (pool *TxPool) promoteExecutables(accounts []common.Address) {
// Track the promoted transactions to broadcast them at once
var promoted []*types.Transaction
// Gather all the accounts potentially needing updates
if accounts == nil {
accounts = make([]common.Address, 0, len(pool.queue))
for addr := range pool.queue {
accounts = append(accounts, addr)
}
}
// Iterate over all accounts and promote any executable transactions
for _, addr := range accounts {
list := pool.queue[addr]
if list == nil {
continue // Just in case someone calls with a non existing account
}
// Drop all transactions that are deemed too old (low nonce)
for _, tx := range list.Forward(pool.currentState.GetNonce(addr)) {
hash := tx.Hash()
log.Trace("Removed old queued transaction", "hash", hash)
pool.all.Remove(hash)
pool.priced.Removed()
}
// Drop all transactions that are too costly (low balance or out of gas)
drops, _ := list.Filter(pool.currentState.GetBalance(addr), pool.currentMaxGas)
for _, tx := range drops {
hash := tx.Hash()
log.Trace("Removed unpayable queued transaction", "hash", hash)
pool.all.Remove(hash)
pool.priced.Removed()
queuedNofundsCounter.Inc(1)
}
// Gather all executable transactions and promote them
for _, tx := range list.Ready(pool.pendingState.GetNonce(addr)) {
hash := tx.Hash()
if pool.promoteTx(addr, hash, tx) {
log.Trace("Promoting queued transaction", "hash", hash)
promoted = append(promoted, tx)
}
}
// Drop all transactions over the allowed limit
if !pool.locals.contains(addr) {
for _, tx := range list.Cap(int(pool.config.AccountQueue)) {
hash := tx.Hash()
pool.all.Remove(hash)
pool.priced.Removed()
queuedRateLimitCounter.Inc(1)
log.Trace("Removed cap-exceeding queued transaction", "hash", hash)
}
}
// Delete the entire queue entry if it became empty.
if list.Empty() {
delete(pool.queue, addr)
}
}
// Notify subsystem for new promoted transactions.
if len(promoted) > 0 {
go pool.txFeed.Send(NewTxsEvent{promoted})
}
// If the pending limit is overflown, start equalizing allowances
pending := uint64(0)
for _, list := range pool.pending {
pending += uint64(list.Len())
}
if pending > pool.config.GlobalSlots {
pendingBeforeCap := pending
// Assemble a spam order to penalize large transactors first
spammers := prque.New(nil)
for addr, list := range pool.pending {
// Only evict transactions from high rollers
if !pool.locals.contains(addr) && uint64(list.Len()) > pool.config.AccountSlots {
spammers.Push(addr, int64(list.Len()))
}
}
// Gradually drop transactions from offenders
offenders := []common.Address{}
for pending > pool.config.GlobalSlots && !spammers.Empty() {
// Retrieve the next offender if not local address
offender, _ := spammers.Pop()
offenders = append(offenders, offender.(common.Address))
// Equalize balances until all the same or below threshold
if len(offenders) > 1 {
// Calculate the equalization threshold for all current offenders
threshold := pool.pending[offender.(common.Address)].Len()
// Iteratively reduce all offenders until below limit or threshold reached
for pending > pool.config.GlobalSlots && pool.pending[offenders[len(offenders)-2]].Len() > threshold {
for i := 0; i < len(offenders)-1; i++ {
list := pool.pending[offenders[i]]
for _, tx := range list.Cap(list.Len() - 1) {
// Drop the transaction from the global pools too
hash := tx.Hash()
pool.all.Remove(hash)
pool.priced.Removed()
// Update the account nonce to the dropped transaction
if nonce := tx.Nonce(); pool.pendingState.GetNonce(offenders[i]) > nonce {
pool.pendingState.SetNonce(offenders[i], nonce)
}
log.Trace("Removed fairness-exceeding pending transaction", "hash", hash)
}
pending--
}
}
}
}
// If still above threshold, reduce to limit or min allowance
if pending > pool.config.GlobalSlots && len(offenders) > 0 {
for pending > pool.config.GlobalSlots && uint64(pool.pending[offenders[len(offenders)-1]].Len()) > pool.config.AccountSlots {
for _, addr := range offenders {
list := pool.pending[addr]
for _, tx := range list.Cap(list.Len() - 1) {
// Drop the transaction from the global pools too
hash := tx.Hash()
pool.all.Remove(hash)
pool.priced.Removed()
// Update the account nonce to the dropped transaction
if nonce := tx.Nonce(); pool.pendingState.GetNonce(addr) > nonce {
pool.pendingState.SetNonce(addr, nonce)
}
log.Trace("Removed fairness-exceeding pending transaction", "hash", hash)
}
pending--
}
}
}
pendingRateLimitCounter.Inc(int64(pendingBeforeCap - pending))
}
// If we've queued more transactions than the hard limit, drop oldest ones
queued := uint64(0)
for _, list := range pool.queue {
queued += uint64(list.Len())
}
if queued > pool.config.GlobalQueue {
// Sort all accounts with queued transactions by heartbeat
addresses := make(addressesByHeartbeat, 0, len(pool.queue))
for addr := range pool.queue {
if !pool.locals.contains(addr) { // don't drop locals
addresses = append(addresses, addressByHeartbeat{addr, pool.beats[addr]})
}
}
sort.Sort(addresses)
// Drop transactions until the total is below the limit or only locals remain
for drop := queued - pool.config.GlobalQueue; drop > 0 && len(addresses) > 0; {
addr := addresses[len(addresses)-1]
list := pool.queue[addr.address]
addresses = addresses[:len(addresses)-1]
// Drop all transactions if they are less than the overflow
if size := uint64(list.Len()); size <= drop {
for _, tx := range list.Flatten() {
pool.removeTx(tx.Hash(), true)
}
drop -= size
queuedRateLimitCounter.Inc(int64(size))
continue
}
// Otherwise drop only last few transactions
txs := list.Flatten()
for i := len(txs) - 1; i >= 0 && drop > 0; i-- {
pool.removeTx(txs[i].Hash(), true)
drop--
queuedRateLimitCounter.Inc(1)
}
}
}
}
在promoteExecutable中有一个promoteTx方法,这个方法是将交易防区pending区方法中。在promoteTx方法中,最后一步执行的是一个Send方法。
这个Send方法会同步将pending区的交易广播至它所连接到的节点,并返回通知到的节点的数量。
然后被通知到的节点继续通知到它添加的节点,继而广播至全网。
至此,发送交易就结束了。此时交易池中的交易等待挖矿打包处理