import os
import time
import copy
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import matplotlib.pyplot as plt
import torchvision
from torchvision import datasets, models, transforms
###
# ? normalize: mean and std values
# ? image show: [0,1] to [0,255]
###
# Data augmentation and normalization for training
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(), # range [0, 255] -> [0.0,1.0]
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val':transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
}
data_dir = 'hymenoptera_data'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x])
for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4, shuffle=True, num_workers=4)
for x in ['train', 'val']
}
dataset_sizes = {x : len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def imshow(inp, title=None):
inp = inp.numpy().transpose((1, 2 ,0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0 ,1)
plt.imshow(inp)
if title is not None:
plt.title(title)
plt.pause(0.001)
inputs, classes = next(iter(dataloaders['train']))
out = torchvision.utils.make_grid(inputs)
imshow(out, title=[class_names[x] for x in classes])
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict)
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs-1))
print('-'*10)
for phase in ['train', 'val']:
if phase == 'train':
scheduler.step()
model.train()
else:
model.eval()
running_loss = 0.0
running_corrects = 0
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss/dataset_sizes[phase]
epoch_acc = running_corrects.double()/dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
model.load_state_dict(best_model_wts)
return model
Visualizing the model predictions
def visualize_model(model, num_images=6):
# ?
was_training = model.training
# ?
model.eval()
images_so_far = 0
fig = plt.figure()
with torch.no_grad():
for i, (inputs, labels) in enumerate(dataloaders['val']):
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
for j in range(inputs.size()[0]):
images_so_far +=1
ax = plt.subplot(num_images//2, 2, images_so_far)
ax.axis('off')
ax.set_title('predicted: {}'.format(class_names[preds[j]]))
imshow(inputs.cpu().data[j])
if images_so_far == num_images:
# ?
model.train(mode=was_training)
return
# ?
model.train(mode=was_training)
model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 2)
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
Train and evaluate
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=25)
Epoch 0/24
----------
train Loss: 0.7851 Acc: 0.6270
val Loss: 1.0494 Acc: 0.6863
Epoch 1/24
----------
train Loss: 0.4664 Acc: 0.8033
val Loss: 0.2943 Acc: 0.8954
Epoch 2/24
----------
train Loss: 0.6914 Acc: 0.7254
val Loss: 0.2396 Acc: 0.9281
Epoch 3/24
----------
train Loss: 0.5356 Acc: 0.7951
val Loss: 0.3148 Acc: 0.9281
Epoch 4/24
----------
train Loss: 0.5372 Acc: 0.7910
val Loss: 0.5439 Acc: 0.8366
Epoch 5/24
----------
train Loss: 0.6590 Acc: 0.7787
val Loss: 0.3142 Acc: 0.8889
Epoch 6/24
----------
train Loss: 0.5722 Acc: 0.8033
val Loss: 0.5639 Acc: 0.8170
Epoch 7/24
----------
train Loss: 0.3940 Acc: 0.8402
val Loss: 0.2142 Acc: 0.9085
Epoch 8/24
----------
train Loss: 0.3693 Acc: 0.8484
val Loss: 0.2529 Acc: 0.8758
Epoch 9/24
----------
train Loss: 0.2801 Acc: 0.8852
val Loss: 0.2550 Acc: 0.8758
Epoch 10/24
----------
train Loss: 0.2674 Acc: 0.8934
val Loss: 0.2333 Acc: 0.9085
Epoch 11/24
----------
train Loss: 0.2915 Acc: 0.8689
val Loss: 0.2292 Acc: 0.9085
Epoch 12/24
----------
train Loss: 0.3659 Acc: 0.8443
val Loss: 0.2254 Acc: 0.9085
Epoch 13/24
----------
train Loss: 0.3359 Acc: 0.8525
val Loss: 0.1940 Acc: 0.9150
Epoch 14/24
----------
train Loss: 0.2926 Acc: 0.8689
val Loss: 0.2075 Acc: 0.8954
Epoch 15/24
----------
train Loss: 0.2606 Acc: 0.8934
val Loss: 0.2457 Acc: 0.9085
Epoch 16/24
----------
train Loss: 0.2715 Acc: 0.8770
val Loss: 0.2307 Acc: 0.9020
Epoch 17/24
----------
train Loss: 0.2026 Acc: 0.8975
val Loss: 0.2478 Acc: 0.9020
Epoch 18/24
----------
train Loss: 0.2696 Acc: 0.8934
val Loss: 0.2385 Acc: 0.8954
Epoch 19/24
----------
train Loss: 0.2277 Acc: 0.9016
val Loss: 0.1987 Acc: 0.9085
Epoch 20/24
----------
train Loss: 0.2901 Acc: 0.9016
val Loss: 0.2024 Acc: 0.9020
Epoch 21/24
----------
train Loss: 0.2981 Acc: 0.8811
val Loss: 0.2100 Acc: 0.8889
Epoch 22/24
----------
train Loss: 0.2462 Acc: 0.8893
val Loss: 0.2201 Acc: 0.9020
Epoch 23/24
----------
train Loss: 0.3056 Acc: 0.8730
val Loss: 0.1911 Acc: 0.9150
Epoch 24/24
----------
train Loss: 0.2561 Acc: 0.9057
val Loss: 0.2074 Acc: 0.9216
Training complete in 3m 57s
Best val Acc: 0.928105
visualize_model(model_ft)
model_conv = torchvision.models.resnet18(pretrained=True)
for param in model_conv.parameters():
param.requires_grad = False
# Parameters of newly constructed modules have requires_grad=True by default
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 2)
model_conv = model_conv.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that only parameters of final layer are being optimized as
# opoosed to before.
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
model_conv = train_model(model_conv, criterion, optimizer_conv,
exp_lr_scheduler, num_epochs=25)
Epoch 0/24
----------
train Loss: 0.6007 Acc: 0.6967
val Loss: 0.3234 Acc: 0.8627
Epoch 1/24
----------
train Loss: 0.4813 Acc: 0.7664
val Loss: 0.2608 Acc: 0.8954
Epoch 2/24
----------
train Loss: 0.4790 Acc: 0.7992
val Loss: 0.2120 Acc: 0.9477
Epoch 3/24
----------
train Loss: 0.5683 Acc: 0.7869
val Loss: 0.3591 Acc: 0.8497
Epoch 4/24
----------
train Loss: 0.3770 Acc: 0.8402
val Loss: 0.2527 Acc: 0.9020
Epoch 5/24
----------
train Loss: 0.4000 Acc: 0.8279
val Loss: 0.1915 Acc: 0.9346
Epoch 6/24
----------
train Loss: 0.3457 Acc: 0.8402
val Loss: 0.2083 Acc: 0.9477
Epoch 7/24
----------
train Loss: 0.3756 Acc: 0.8443
val Loss: 0.2210 Acc: 0.9346
Epoch 8/24
----------
train Loss: 0.3511 Acc: 0.8607
val Loss: 0.2047 Acc: 0.9412
Epoch 9/24
----------
train Loss: 0.4228 Acc: 0.8361
val Loss: 0.2112 Acc: 0.9412
Epoch 10/24
----------
train Loss: 0.3002 Acc: 0.8648
val Loss: 0.1862 Acc: 0.9477
Epoch 11/24
----------
train Loss: 0.4303 Acc: 0.8320
val Loss: 0.2357 Acc: 0.9216
Epoch 12/24
----------
train Loss: 0.3457 Acc: 0.8320
val Loss: 0.1871 Acc: 0.9477
Epoch 13/24
----------
train Loss: 0.4396 Acc: 0.8033
val Loss: 0.2109 Acc: 0.9346
Epoch 14/24
----------
train Loss: 0.2644 Acc: 0.8852
val Loss: 0.2328 Acc: 0.9412
Epoch 15/24
----------
train Loss: 0.3323 Acc: 0.8689
val Loss: 0.2145 Acc: 0.9346
Epoch 16/24
----------
train Loss: 0.3899 Acc: 0.7951
val Loss: 0.2646 Acc: 0.9150
Epoch 17/24
----------
train Loss: 0.4303 Acc: 0.8074
val Loss: 0.2338 Acc: 0.9281
Epoch 18/24
----------
train Loss: 0.3758 Acc: 0.8607
val Loss: 0.2158 Acc: 0.9346
Epoch 19/24
----------
train Loss: 0.2428 Acc: 0.9303
val Loss: 0.2132 Acc: 0.9281
Epoch 20/24
----------
train Loss: 0.3515 Acc: 0.8566
val Loss: 0.2062 Acc: 0.9412
Epoch 21/24
----------
train Loss: 0.3181 Acc: 0.8689
val Loss: 0.2119 Acc: 0.9281
Epoch 22/24
----------
train Loss: 0.3594 Acc: 0.8156
val Loss: 0.2083 Acc: 0.9412
Epoch 23/24
----------
train Loss: 0.3170 Acc: 0.8648
val Loss: 0.1905 Acc: 0.9346
Epoch 24/24
----------
train Loss: 0.3265 Acc: 0.8607
val Loss: 0.2156 Acc: 0.9281
Training complete in 2m 52s
Best val Acc: 0.947712
visualize_model(model_conv)