Actor-Critic框架

import numpy as np
import tensorflow as tf
import gym

np.random.seed(2)
tf.set_random_seed(2)  # reproducible

# Superparameters
OUTPUT_GRAPH = False
MAX_EPISODE = 3000
DISPLAY_REWARD_THRESHOLD = 200  # renders environment if total episode reward is greater then this threshold
MAX_EP_STEPS = 1000  # maximum time step in one episode
RENDER = False  # rendering wastes time
GAMMA = 0.9  # reward discount in TD error
LR_A = 0.001  # learning rate for actor
LR_C = 0.01  # learning rate for critic

env = gym.make('CartPole-v0')
env.seed(1)  # reproducible
env = env.unwrapped

# 保存 n_state保存了observation数组的大小 即环境用多大的数组来表示状态  这里是4
N_F = env.observation_space.shape[0]

# 保存了系统中action的数目 这里是2
N_A = env.action_space.n


class Actor(object):
    def __init__(self, sess, n_features, n_actions, lr=0.001):
        self.sess = sess
        # 用 tensorflow 建立 Actor 神经网络,
        # 搭建好训练的 Graph.

        self.s = tf.placeholder(tf.float32, [1, n_features], "state")
        self.a = tf.placeholder(tf.int32, None, "act")
        self.td_error = tf.placeholder(tf.float32, None, "td_error")  # TD_error

        with tf.variable_scope('Actor'):
            l1 = tf.layers.dense(
                inputs=self.s,
                units=20,  # number of hidden units
                activation=tf.nn.relu,
                kernel_initializer=tf.random_normal_initializer(0., .1),  # weights
                bias_initializer=tf.constant_initializer(0.1),  # biases
                name='l1'
            )

            self.acts_prob = tf.layers.dense(
                inputs=l1,
                units=n_actions,  # output units
                activation=tf.nn.softmax,  # get action probabilities
                kernel_initializer=tf.random_normal_initializer(0., .1),  # weights
                bias_initializer=tf.constant_initializer(0.1),  # biases
                name='acts_prob'
            )

        with tf.variable_scope('exp_v'):
            log_prob = tf.log(self.acts_prob[0, self.a])  # log 动作概率
            self.exp_v = tf.reduce_mean(log_prob * self.td_error)  # log 概率 * TD 方向

        with tf.variable_scope('train'):
            # 因为我们想不断增加这个 exp_v (动作带来的额外价值),
            # 所以我们用过 minimize(-exp_v) 的方式达到
            # maximize(exp_v) 的目的
            self.train_op = tf.train.AdamOptimizer(lr).minimize(-self.exp_v)  # minimize(-exp_v) = maximize(exp_v)

    def learn(self, s, a, td):
        # s, a 用于产生 Gradient ascent 的方向,
        # td 来自 Critic, 用于告诉 Actor 这方向对不对.
        s = s[np.newaxis, :]
        feed_dict = {self.s: s, self.a: a, self.td_error: td}
        _, exp_v = self.sess.run([self.train_op, self.exp_v], feed_dict)
        return exp_v

    def choose_action(self, s):
        # 根据 s 选 行为 a
        s = s[np.newaxis, :]
        probs = self.sess.run(self.acts_prob, {self.s: s})  # 获取所有可能的状态
        return np.random.choice(np.arange(probs.shape[1]), p=probs.ravel())  # 返回一个整数


class Critic(object):
    def __init__(self, sess, n_features, lr=0.01):
        # 用 tensorflow 建立 Critic 神经网络,
        # 搭建好训练的 Graph.
        self.sess = sess

        self.s = tf.placeholder(tf.float32, [1, n_features], "state")
        self.v_ = tf.placeholder(tf.float32, [1, 1], "v_next")
        self.r = tf.placeholder(tf.float32, None, 'r')

        with tf.variable_scope('Critic'):
            l1 = tf.layers.dense(
                inputs=self.s, # 输入该网络层的数据
                units=20,  # 输出的维度大小,改变inputs的最后一维
                activation=tf.nn.relu,  # 激活函数,即神经网络的非线性变化
                # have to be linear to make sure the convergence of actor.
                # But linear approximator seems hardly learns the correct Q.
                kernel_initializer=tf.random_normal_initializer(0., .1),  # 权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。
                bias_initializer=tf.constant_initializer(0.1),  # 偏置项的正则化,可选
                name='l1'
            )

            self.v = tf.layers.dense(
                inputs=l1,
                units=1,  # output units
                activation=None,
                kernel_initializer=tf.random_normal_initializer(0., .1),  # 权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。
                bias_initializer=tf.constant_initializer(0.1),     # 偏置项正则化
                name='V'
            )

        with tf.variable_scope('squared_TD_error'):
            self.td_error = self.r + GAMMA * self.v_ - self.v
            self.loss = tf.square(self.td_error)  # TD_error = (r+gamma*V_next) - V_eval
        with tf.variable_scope('train'):
            self.train_op = tf.train.AdamOptimizer(lr).minimize(self.loss)

    def learn(self, s, r, s_):
        # 学习 状态的价值 (state value), 不是行为的价值 (action value),
        # 计算 TD_error = (r + v_) - v,
        # 用 TD_error 评判这一步的行为有没有带来比平时更好的结果,
        # 可以把它看做 Advantage
        s, s_ = s[np.newaxis, :], s_[np.newaxis, :]

        v_ = self.sess.run(self.v, {self.s: s_})
        td_error, _ = self.sess.run([self.td_error, self.train_op],
                                    {self.s: s, self.v_: v_, self.r: r})

        # 学习时产生的 TD_error
        return td_error


sess = tf.Session()


actor = Actor(sess, n_features=N_F, n_actions=N_A, lr=LR_A)

print()
critic = Critic(sess, n_features=N_F,
                lr=LR_C)  # critic需要学习得更快

sess.run(tf.global_variables_initializer())

if OUTPUT_GRAPH:
    tf.summary.FileWriter("logs/", sess.graph)

for i_episode in range(MAX_EPISODE):
    s = env.reset()
    t = 0
    track_r = []
    while True:
        if RENDER: env.render()

        a = actor.choose_action(s)

        s_, r, done, info = env.step(a)

        if done: r = -20

        track_r.append(r)

        td_error = critic.learn(s, r, s_)  # gradient = grad[r + gamma * V(s_) - V(s)]
        actor.learn(s, a, td_error)  # true_gradient = grad[logPi(s,a) * td_error]

        s = s_
        t += 1

        if done or t >= MAX_EP_STEPS:
            ep_rs_sum = sum(track_r)

            if 'running_reward' not in globals():
                running_reward = ep_rs_sum
            else:
                running_reward = running_reward * 0.95 + ep_rs_sum * 0.05
            if running_reward > DISPLAY_REWARD_THRESHOLD: RENDER = True  # rendering
            print("episode:", i_episode, "  reward:", int(running_reward))
            break

你可能感兴趣的:(强化学习)