Codeforces Round #436 (Div. 2)E. Fire

E. Fire
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Polycarp is in really serious trouble — his house is on fire! It's time to save the most valuable items. Polycarp estimated that it would take tiseconds to save i-th item. In addition, for each item, he estimated the value of di — the moment after which the item i will be completely burned and will no longer be valuable for him at all. In particular, if ti ≥ di, then i-th item cannot be saved.

Given the values pi for each of the items, find a set of items that Polycarp can save such that the total value of this items is maximum possible. Polycarp saves the items one after another. For example, if he takes item a first, and then item b, then the item a will be saved in ta seconds, and the item b — in ta + tb seconds after fire started.

Input

The first line contains a single integer n (1 ≤ n ≤ 100) — the number of items in Polycarp's house.

Each of the following n lines contains three integers ti, di, pi (1 ≤ ti ≤ 201 ≤ di ≤ 2 0001 ≤ pi ≤ 20) — the time needed to save the item i, the time after which the item i will burn completely and the value of item i.

Output

In the first line print the maximum possible total value of the set of saved items. In the second line print one integer m — the number of items in the desired set. In the third line print m distinct integers — numbers of the saved items in the order Polycarp saves them. Items are 1-indexed in the same order in which they appear in the input. If there are several answers, print any of them.

Examples
input
3
3 7 4
2 6 5
3 7 6
output
11
2
2 3 
input
2
5 6 1
3 3 5
output
1
1
1 
Note

In the first example Polycarp will have time to save any two items, but in order to maximize the total value of the saved items, he must save the second and the third item. For example, he can firstly save the third item in 3 seconds, and then save the second item in another 2seconds. Thus, the total value of the saved items will be 6 + 5 = 11.

In the second example Polycarp can save only the first item, since even if he immediately starts saving the second item, he can save it in 3seconds, but this item will already be completely burned by this time.

题意:n个物件,现在对这些物件进行抢救,每个物件有抢救时间t,d时间之后该文件永久损毁,该物件的价值为q。

思路:dp[i][j]代表j时间内抢救i个物件可以抢救的最大价值,那么当第i个的t>j或者j>=d该物件不选,那么dp[i][j]=dp[i-1][j];

其余的情况就是更新,dp[i][j]=max(dp[i-1][j],dp[i-1][j-t]+p)

代码:

#include
using namespace std;

struct G
{
	int t, d, v;
	int id;
	bool operator<(const G&x)
	{
		return d < x.d;
	}
}g[105];

int dp[105][2005];
bool vis[105][2005];

int main()
{
	int n, maxx = 0;
	scanf("%d", &n);
	memset(dp, 0, sizeof(dp));
	memset(vis, 0, sizeof(vis));
	for (int i = 1; i <= n; i++)
	{
		scanf("%d %d %d", &g[i].t, &g[i].d, &g[i].v);
		g[i].id = i;
		maxx = max(maxx, g[i].d);
	}
	sort(g + 1, g + n + 1);
	int maxn;
	for (int i = 1; i <= n; i++)
	{
		maxn = 0;
		for (int j = 0; j <= maxx; j++)
		{
			if (j < g[i].t || j >= g[i].d)
				dp[i][j] = dp[i - 1][j];
			else
			{
				dp[i][j] = dp[i - 1][j];
				if (dp[i - 1][j - g[i].t] + g[i].v > dp[i][j])
				{
					vis[i][j] = true;
					dp[i][j] = dp[i - 1][j - g[i].t] + g[i].v;
				}
			}
			if (dp[i][j] >= dp[i][maxn])
				maxn = j;
		}
	}
	printf("%d\n", dp[n][maxn]);
	vector ans;
	for (int i = n; i; i--)
	{
		if (vis[i][maxn])
		{
			ans.push_back(g[i].id);
			maxn -= g[i].t;
		}
	}
	printf("%d\n", ans.size());
	for (int i = ans.size() - 1; i >= 0; i--)
		printf("%d ", ans[i]);
	return 0;
}


你可能感兴趣的:(DP)