1、品类及SKU多,用户覆盖广,运营难度大;
2、客单价偏低,强调留存和复购,强化运营;
3、产品设计相对成熟,优化运营时重中之重;
4、竞争激烈。
要想实现精细化运营,数据分析是必不可少的一个环节。电商网站要提高运营效率,至少需要五大关键指标:活跃用户量、转化率、留存、复购和 GMV 。
在商品运营中,尤其是首页商品更新速度快,我们要格外重视转化,甚至要精确到不同时间区间、不同位置、不同商品的转化率。然后根据转化率,结合业务经验,不断调整运营策略。
商品运营有一个非常大的优势:投入低,见效快,效果明显,商品运营的本质是通过不同坑位、不同活动、不同商品的分析来提高我们的转化率和 GMV 。
必须知道首页BANNER的变化时的转化率,UV点击转化、加入购物车转化、购物车支付转化
根据商品品类的利润率、转化率等表现,我们将商品品类分成 4 种:导流型品类、高利润品类、高转化品类、未来明星型品类。
1. 导流型品类:利润非常低,但是购买量大、市场需求大,目的在于导流。
2. 高利润型品类:利润率高,希望用户更多购买此类商品。
3. 高转化品类:带量。
4. 未来明星型品类:这是电商平台的潜力股,虽然曝光量很低,但是转化率极高。
明确了商品的品类后,我们就可以针对性地展开运营。
精细化运营的情况下,做好用户运营主要从两个角度出发:
一是找到用户留存的关键点;
二是采取差异化的运营策略,区分不同的用户群体,对不同群体采取差异化的运营方式。
留住一个客户的成本远远小于重新获取一个客户的成本,所以留存至关重要,它关系着一个平台能否持续健康发展。
留存曲线分成三个周期,开始是震荡期和选择期,经过这两个周期,如果用户能够留下来,就会进入一个相对平稳期。
以某电商平台为例,在该网站上 7 天内完成 3 次购买的用户的留存度(红色)是一般用户(绿色)的 4 倍左右,因此在一周内让用户完成 3 次购买就是他的魔法数字。
对比两组用户,查看关键周期
不同用户的活跃度、商品偏好、购买决策阶段都各异,我们需要采取差异化的运营策略。差异化的运营策略主要从3个角度出发:基于用户的活跃度、基于用户对不同商品的偏好、基于用户所处的决策阶段。
基于用户的活跃程度,我们可以将用户大致分成“流失用户”、“低频活跃用户”和“高频活跃用户”。一般情况下,一个用户 30 天甚至更久没有登录你的平台,我们基本可以认为该用户流失了。对于流失客户,是否要考虑采取召回策略。30 天内活跃 10 天以上的高度活跃用户,我们是否可以向其推荐更多精准的商品。
其次基于用户对不同商品的偏好,我们采用用户分群,将用户区分成“美妆类”、“鞋帽类”、“数码类”、“书籍类”等不同群体,然后精准推送新品。用户偏好中转化率较低的人群,做精细化运营
736
作者 | 揭发
近几年电商行业存在明显的价格战现象,各大网站纷纷通过降价、促销等方式来吸引用户。KPCB 的调查报告显示,2009 年到 2015 年全球移动端新用户的增长率持续下滑,可以预计在 2016 年这一增速将继续放缓。这意味人口增长带来的流量红利正在逐渐消退,用户增长将更加乏力。那么,通过单纯的价格战来吸引新用户的方式还可行吗?
严峻的市场形势让我们思考:
点击“学习”观看视频
在众多的互联网细分行业中,电商行业起步早,发展时间长,行业特征显著:
要想实现精细化运营,数据分析是必不可少的一个环节。电商网站要提高运营效率,至少需要五大关键指标:活跃用户量、转化率、留存、复购和 GMV 。
光知道指标是远远不够的,电商行业的精细化运营需要结合业务实际展开。下面,我们从商品运营、用户运营和产品运营这 3 个关键思路展开,聊聊电商网站该如何提高运营效率。
前面提到电商行业的一大特点是商品品类或者 SKU 非常多,那么如此多的商品该如何运营呢?
这是三个电商 APP 的首页界面:前两个是京东和国美,属于平台型的电商;第三个是生鲜水果平台,属于垂直型电商。不难发现电商的产品在设计上非常类似,首页上面呈现的是轮播的 Banner ,下面是活动专区。
在商品运营中,尤其是首页商品更新速度快,我们要格外重视转化,甚至要精确到不同时间区间、不同位置、不同商品的转化率。然后根据转化率,结合业务经验,不断调整运营策略。然而目前,即使是大型的电商网站,也没有很好地做到这一点,对于每个商品品类/SKU 的转化率的分析仍存在一定的空缺。
商品运营有一个非常大的优势:投入低,见效快,效果明显,商品运营的本质是通过不同坑位、不同活动、不同商品的分析来提高我们的转化率和 GMV 。
下图展示了一个电商购买流程的主路径:首页——活动页——商品详情页——支付完成。从精细化用户行为分析的角度出发,我们关注转化路径每一步的转化率;通过分析不难发现最后一步“支付完成”的转化率偏低。
我们更需要基于三个关键转化“UV-点击”、“点击-加入购物车”、“购物车-支付成功”,对不同的商品进行比较分析,从而及时调整运营策略,下图就是各个步骤的转化率:
电商网站的运营节奏非常快,尤其是活动专区的“秒杀”、“抢购”等活动,需要实时监测 SKU 的更新变化。上图中,某电商平台进行了一次微信上的促销活动,通过实时监测到对应的平台访问情况,便于运营人员及时调整运营策略。
电商网站上的商品品类非常多,每一个品类都应该有明确的定位,不同定位的品类应该有不同的运营策略。根据商品品类的利润率、转化率等表现,我们将商品品类分成 4 种:导流型品类、高利润品类、高转化品类、未来明星型品类。
1. 导流型品类:利润非常低,但是购买量大、市场需求大,目的在于导流。
2. 高利润型品类:利润率高,希望用户更多购买此类商品。
3. 高转化品类:带量。
4. 未来明星型品类:这是电商平台的潜力股,虽然曝光量很低,但是转化率极高。
明确了商品的品类后,我们就可以针对性地展开运营。
这是新型的波士顿矩阵,横坐标代表商品的曝光量,纵坐标是商品的转化率,图中的每一个圆圈代表一个品类的商品。右上角的商品品类曝光量大、转化率高,是现金流的重要业务;而左上角的商品虽然曝光率非常低,但是转化率极高,属于我们上面提到的未来明星型品类,对于这一类商品,我们在后期的运营中可以增加其曝光量。
正如开头提到的,随着互联网用户增长速度的放缓,用户体验愈发重要,之前无目的的短信推送、APP 通知有可能使用户厌烦,破坏用户的体验;甚至可能导致用户退订、卸载。
精细化运营的情况下,做好用户运营主要从两个角度出发:一是找到用户留存的关键点;二是采取差异化的运营策略,区分不同的用户群体,对不同群体采取差异化的运营方式。
留住一个客户的成本远远小于重新获取一个客户的成本,所以留存至关重要,它关系着一个平台能否持续健康发展。
留存曲线分成三个周期,开始是震荡期和选择期,经过这两个周期,如果用户能够留下来,就会进入一个相对平稳期。
在硅谷流向的 growth hacking 中,经常提到 magic number(魔法数字)。
那么作为一个电商平台,你的平台的魔法数字是什么?
以某电商平台为例,在该网站上 7 天内完成 3 次购买的用户的留存度(红色)是一般用户(绿色)的 4 倍左右,因此在一周内让用户完成 3 次购买就是他的魔法数字。
不同用户的活跃度、商品偏好、购买决策阶段都各异,我们需要采取差异化的运营策略。差异化的运营策略主要从3个角度出发:基于用户的活跃度、基于用户对不同商品的偏好、基于用户所处的决策阶段。
基于用户的活跃程度,我们可以将用户大致分成“流失用户”、“低频活跃用户”和“高频活跃用户”。一般情况下,一个用户 30 天甚至更久没有登录你的平台,我们基本可以认为该用户流失了。对于流失客户,是否要考虑采取召回策略。30 天内活跃 10 天以上的高度活跃用户,我们是否可以向其推荐更多精准的商品。
其次基于用户对不同商品的偏好,我们采用用户分群,将用户区分成“美妆类”、“鞋帽类”、“数码类”、“书籍类”等不同群体,然后精准推送新品。
最后,基于用户购买决策的不同阶段。一个标准的购买流程,先后经历“首页浏览/搜索——浏览商品详情页——商品对比——加入购物车——支付成功”等几个环节,用户在每一个节点都处于不同的决策阶段。我们从维度(属性数据)和指标(行为数据)出发,对用户分群,如“领取了优惠券,但是未使用”的用户,采取精准的推送。我们从 GrowingIO 提供的 API 导出这些用户的 ID 和属性,然后对接企业内容的 CRM 或者 EDM 进行精准的推送和提醒,刺激用户的转化。
优化产品不同路径的转化率,关注购买意愿高但转化率低的用户
注重用户点评的管理