MATLAB:
% 作者:Ephemeroptera
% 时间:2018/11/24
% 联系qq:605686962
%% 读取视频以及视频第一帧
video=VideoReader('ww.mp4');
firstFrame=imresize(readFrame(video),[480 640]);
%% KLT的初始化设置
faceDetector = vision.CascadeObjectDetector; %开启前脸侦测器
faceBbox=faceDetector(firstFrame); %检测人脸
MinEigenPoints = detectMinEigenFeatures(rgb2gray(firstFrame), 'ROI', faceBbox);%使用最小特征值算法和返回cornerPoints检测角点
firstShow=insertObjectAnnotation(firstFrame,'rectangle',faceBbox,'Face','LineWidth',2,'Color','g'); %显示
firstShow=insertMarker(firstShow,MinEigenPoints.Location,'+','Color','w','Size',2);
figure(1);imshow(firstShow);title('the initial');
pointTracker = vision.PointTracker('MaxBidirectionalError', 2);%向前后错误阈值设置为2
initialize(pointTracker, MinEigenPoints.Location, firstFrame);%初始化追踪器
%% KLT追踪
oldPoints =MinEigenPoints.Location;% 获取初始化时特征角点
bboxPoints = bbox2points(faceBbox);% 获取人脸框的四个坐标
n=2;
while hasFrame(video)%遍历视频
frame = imresize(readFrame(video),[480 640]); % 读取当前帧
[newPoints,validity,score] = pointTracker(frame); % 获取可疑点
oldPoints = oldPoints(validity, :); % 获取高置信点匹配对
newPoints = newPoints(validity, :); % 获取高置信点匹配对(第一次过滤)
%估计几何仿射关系,进一步获取高质量的点匹配对(第二次过滤)
[xform, oldPoints, newPoints] = estimateGeometricTransform(oldPoints, newPoints, 'similarity', 'MaxDistance', 4);
bboxPoints = transformPointsForward(xform, bboxPoints); %由仿射关系更新bboxPoints
bboxPolygon = reshape(bboxPoints', 1, []);% 重构成行向量
%显示每一帧
trackShow = insertShape(frame,'Polygon',bboxPolygon,'LineWidth',2,'Color','g');
trackShow = insertMarker(trackShow,newPoints,'+','Color','w','Size',2);
figure(2);imshow(trackShow);title(strcat('NO. ',num2str(n),' Frame..'));drawnow;
%新旧轮替
oldPoints = newPoints;
setPoints(pointTracker, oldPoints);
n=n+1;
end
结果演示:
初始:
追踪:
C++:
/****************************************************************/
//作者:Ephemeroptera
//最后修改时间:2018/11/26
//地点:AHU;
//联系qq:605686962
/****************************************************************/
#include
#include"opencv2/opencv.hpp"
#include "opencv2/video/tracking.hpp"
#include "dlib/image_processing/frontal_face_detector.h"
#include
#include
using namespace cv;
using namespace std;
int main()
{
try
{
//读取视频
VideoCapture capture("eyes.avi");
//声明前脸检测器detector
dlib::frontal_face_detector faceDetector = dlib::get_frontal_face_detector();
//捕获第一帧
Mat firstFrame;
capture >> firstFrame;
resize(firstFrame, firstFrame, Size(640, 480));
//cv to dlib
dlib::cv_image cframe(firstFrame);
//检测人脸
std::vector facebbox = faceDetector(cframe);
//facebbox格式由dlib转换为cv
Rect faceRect(facebbox[0].left(), facebbox[0].top(), facebbox[0].width(), facebbox[0].height());
//再变换为Mat形式
Mat faceROI = (Mat_(4, 2) << faceRect.x, faceRect.y,
faceRect.x + faceRect.width, faceRect.y,
faceRect.x + faceRect.width, faceRect.y + faceRect.height,
faceRect.x, faceRect.y + faceRect.height);
faceROI = faceROI.t();//转置
//特征点初始化
const ushort MAX_COUNT = 300;//特征点数量上限
vector initCorners;//初始特征点容器
Mat firstGray(firstFrame.size(), CV_8UC1);//灰度化
cvtColor(firstFrame, firstGray, CV_RGB2GRAY);
//指定ROI
Mat mask = Mat::zeros(firstGray.size(), CV_8UC1);//mask初始化全为0
mask(faceRect).setTo(255);//将非roi区域置为255
goodFeaturesToTrack(firstGray, initCorners, MAX_COUNT, 0.01, 10, mask, 3, 3, 0, 0.04);//特征点初步检测
//亚像素再次检测
Size subPixWinSize(10, 10);
TermCriteria termcrit(TermCriteria::COUNT | TermCriteria::EPS, 20, 0.03);//声明迭代属性(最大次数或者极小波动)
cornerSubPix(firstGray, initCorners, subPixWinSize, Size(-1, -1), termcrit);//进一步满足亚像素特性筛选
//遍历视频
int numOfframes = 1;//当前帧数
Mat oldFrame;//定义新帧和旧帧
Mat newFrame;
vector oldCorners;
vector newCorners;
while (waitKey(30) != 27)
{
++numOfframes;//帧+1
//获取每一帧
Mat rgbFrame;
capture >> rgbFrame;
//读取结束跳出
if (rgbFrame.empty())
{
break;
}
//灰度化
Mat grayFrame(rgbFrame.size(), CV_8UC1);
cvtColor(rgbFrame, grayFrame, CV_RGB2GRAY);
//图像大小归一
resize(grayFrame, grayFrame, Size(640, 480));
if (numOfframes == 2)//如果遍历开始
{
oldFrame = firstGray;
oldCorners = initCorners;
}
newFrame = grayFrame;//当前帧为新帧
//KLT核心算法
vector validity;//置信
vector err;//有效光流的误差
Size winSize(31, 31);//搜索窗大小
calcOpticalFlowPyrLK(oldFrame, newFrame, oldCorners, newCorners, validity, err, winSize, 3, termcrit, 0, 0.001);
//标记点(遍历所有特征点)
int i; int k;
for (i = k = 0; i < newCorners.size(); ++i)
{
if (!validity[i])//如果没找到对应点跳转下一个
continue;
oldCorners[k] = oldCorners[i];
newCorners[k++] = newCorners[i];//提取高质量点
circle(rgbFrame, newCorners[i], 2, Scalar(0, 255, 0), -1, 8);//标记
}
oldCorners.resize(k); //滤除劣质特征点
newCorners.resize(k);
//预测特诊点的变化
Mat transEstimate = estimateRigidTransform(oldCorners, newCorners, 0);
//bbox变化
Mat bias = Mat::ones(Size(4, 1), CV_64FC1);//添加偏置,(2x4)->(3x4)
faceROI.push_back(bias);
faceROI = transEstimate * faceROI;//(2x3)*(3x4)->(2x4)
//画出bbox
Point2f point0(faceROI.at(0, 0), faceROI.at(1, 0));
Point2f point1(faceROI.at(0, 1), faceROI.at(1, 1));
Point2f point2(faceROI.at(0, 2), faceROI.at(1, 2));
Point2f point3(faceROI.at(0, 3), faceROI.at(1, 3));
line(rgbFrame, point0, point1, Scalar(255, 0, 0),3,16);
line(rgbFrame, point1, point2, Scalar(255, 0, 0),3,16);
line(rgbFrame, point2, point3, Scalar(255, 0, 0),3,16);
line(rgbFrame, point3, point0, Scalar(255, 0, 0),3,16);
imshow("KLT", rgbFrame);
//新旧轮替
oldFrame = newFrame;
oldCorners = newCorners;
}
}
catch (const std::exception& e)
{
cout << "\nexception thrown!" << endl;
cout << e.what() << endl;
}
return 0;
}
结果展示: