- [KO机器学习] Day2 特征工程:数据预处理:序号编码、独热编码、二进制编码
码农男孩
机器学习机器学习人工智能计算机视觉算法支持向量机
场景描述类别型特征(categoricalfeature)主要是指性别(男女)、血型(A,B,AB,O)等只在有限选项内取值的特征。类别型特征原始输入通常是字符串形式,除了决策树等少数模型能直接处理字符串形式的输入,对于逻辑回归、支持向量机等模型来说,类别型特征必须经过处理转换成数值型特征才能正确工作。在对数据进行预处理时,应该怎么样处理类别型特征?难度:★☆☆☆☆①序号编码OrdinalEnco
- 基于传统机器学习SVM支持向量机进行分类和目标检测-视频介绍下自取
no_work
深度学习机器学习支持向量机分类
内容包括:python通过SVM+SIFT实现墙体裂缝检测107python通过SVM+SIFT实现墙体裂缝检测_哔哩哔哩_bilibili该代码使用python语言编写,代码实现了一个基于SVM(支持向量机)和SIFT(尺度不变特征变换)特征的裂缝检测系统。具体来说,分为两个部分:训练部分和检测部分。训练部分:加载图像:load_images函数从指定文件夹加载图像,并为每张图像分配标签(1表示
- SVM支持向量机python实现
努力的小巴掌
经典机器学习支持向量机
支持向量机(SupportVectorMachine,SVM)是一种强大的监督学习算法,主要用于分类和回归任务。SVM的核心思想是找到一个最优的超平面,使得不同类别的数据点能够被尽可能清晰地分开,并且这个超平面与最近的数据点之间有最大的间隔。这些最近的数据点被称为“支持向量”,因为它们决定了超平面的位置和方向。支持向量机的关键概念1.**最大间隔分离器**:-SVM的目标是找到一个超平面,该超平面
- Python机器学习小项目实战:随机森林算法实现信用卡欺诈检测
码上研习
Python机器学习小项目实战机器学习算法python
1.引言在之前的机器学习之旅中,我们已经探索了许多强大的算法,例如逻辑回归、支持向量机、决策树等等。每种算法都有其独特的优势和适用场景,但它们也存在一些共同的局限性。单个模型往往难以完美地捕捉复杂的数据模式,容易受到过拟合或欠拟合的影响,并且在面对噪声数据时显得脆弱。想象一下,你正在尝试预测股票价格的涨跌。你可以使用逻辑回归,但是逻辑回归假设特征之间是线性相关的,这可能无法捕捉股票市场中的复杂非线
- 核方法、核技巧、核函数、核矩阵
第六五签
数学模型矩阵线性代数
核方法(KernelMethods)和核技巧(KernelTrick)是机器学习中处理非线性问题的强大理论框架和实践工具。核心目标:征服非线性许多机器学习算法(如感知机、支持向量机SVM、主成分分析PCA)本质上是寻找线性模式或线性决策边界(直线/平面/超平面)。然而,现实世界的数据往往是线性不可分的,这意味着在原始特征空间中,无法用一条直线(或超平面)完美地将不同类别的数据点分开,或者无法用线性
- 划界与分类的艺术:支持向量机(SVM)的深度解析
忘梓.
杂文支持向量机分类机器学习
划界与分类的艺术:支持向量机(SVM)的深度解析1.引言支持向量机(SupportVectorMachine,SVM)是机器学习中的经典算法,以其强大的分类和回归能力在众多领域得到了广泛应用。SVM通过找到最优超平面来分隔数据,从而实现高效的分类。然而,它在高维数据中的复杂性和核方法的使用也带来了挑战。本文将深入探讨SVM的工作原理、实现技巧、适用场景及其局限性。2.SVM的数学基础与直观理解SV
- 基于CIFAR-10图像数据集的图像分类算法——MATLAB仿真
代码探险狂人
分类matlab机器学习Matlab
基于CIFAR-10图像数据集的图像分类算法——MATLAB仿真图像分类是计算机视觉领域中的重要任务之一,它的目标是将输入的图像分到不同的预定义类别中。在本文中,我们将介绍一种基于CIFAR-10图像数据集和支持向量机(SVM)的图像分类算法,并使用MATLAB进行仿真实现。CIFAR-10是一个常用的图像分类数据集,它包含了10个不同类别的60000个32x32彩色图像。这些类别包括飞机、汽车、
- 核函数:解锁支持向量机的强大能力
从零开始学习人工智能
大数据人工智能机器学习
在机器学习的世界中,支持向量机(SVM)是一种强大的分类算法,而核函数则是其背后的“魔法”,让SVM能够处理复杂的非线性问题。今天,我们就来深入探讨核函数的奥秘,看看它们是如何帮助SVM在高维空间中找到最佳决策边界的。一、核函数是什么?核函数本质上是一种计算两个向量在高维空间中内积的方法,但它避免了直接将数据映射到高维空间的复杂计算。通过核函数,我们可以巧妙地将原始数据从低维空间映射到高维空间,从
- 支持向量机(SVM):解锁数据分类与回归的强大工具
从零开始学习人工智能
人工智能开源性能优化
在机器学习的世界中,支持向量机(SupportVectorMachine,简称SVM)一直以其强大的分类和回归能力而备受关注。本文将深入探讨SVM的核心功能,以及它如何在各种实际问题中发挥作用。一、SVM是什么?支持向量机是一种监督学习算法,主要用于分类和回归任务。它的核心思想是通过在特征空间中找到一个最优的分界面(超平面),将不同类别的数据点分隔开,或者拟合出一个回归函数来预测目标值。SVM的强
- 什么时候开始学习深度学习?
机器学习算法
人工智能机器学习深度学习学习深度学习人工智能机器学习计算机视觉知识图谱神经网络
咱们先来聊聊机器学习和深度学习的关系~这个问题其实挺常见的,之前我也跟不少同事、同学聊过。最近有好几个同学也聊过。简单说,深度学习是机器学习的一个子集,两者不是并列关系,而是“包含”关系。你可以这么理解:机器学习是一个大圈子,里面包括了各种方法,比如线性回归、决策树、支持向量机等等。而深度学习,它是基于神经网络的一类方法,尤其适合处理图像、语音、自然语言这些复杂的、非结构化的数据。深度学习为什么这
- 支持向量机(SVM)例题
phoenix@Capricornus
PR书稿支持向量机算法机器学习
对于图中所示的线性可分的20个样本数据,利用支持向量机进行预测分类,有三个支持向量A(0,2)A(0,2)A(0,2)、B(2,0)B(2,0)B(2,0)和C(−1,−1)C(-1,-1)C(−1,−1)。求支持向量机的线性判别函数。删除点A后,支持向量是否变化?求解:三个点,建立联立方程组:{w1xA+w2yA+b=1w1xB+w2yB+b=1w1xC+w2yC+b=−1\begin{case
- 支持向量机SVM:从数学原理到实际应用
代码很孬写
支持向量机算法机器学习语言模型自然语言处理ai人工智能
前言本篇文章全面深入地探讨了支持向量机(SVM)的各个方面,从基本概念、数学背景到Python和PyTorch的代码实现。文章还涵盖了SVM在文本分类、图像识别、生物信息学、金融预测等多个实际应用场景中的用法。一、引言背景支持向量机(SVM,SupportVectorMachines)是一种广泛应用于分类、回归、甚至是异常检测的监督学习算法。自从Vapnik和Chervonenkis在1995年首
- 基于C++实现的深度学习(cnn/svm)分类器Demo
长长同学
深度学习c++cnn
1.项目简介本项目是一个基于C++实现的深度学习与传统机器学习结合的分类器Demo,主要流程为:从CSV文件读取样本数据用卷积神经网络(CNN)进行特征提取用支持向量机(SVM)进行最终分类支持模型的保存与加载提供DLL接口,方便与其他软件集成网盘地址:https://pan.baidu.com/s/1VoFdPAzueITcl_Up6hR_Wg2.主要结构与全局变量Sample结构体:存储单个样
- python打卡DAY25
Bugabooo
python开发语言
##注入所需库importpandasaspdimportseabornassnsimportmatplotlib.pyplotaspltimportrandomimportnumpyasnpimporttimeimportshap#fromsklearn.svmimportSVC#支持向量机分类器##fromsklearn.neighborsimportKNeighborsClassifier#
- python打卡DAY20
Bugabooo
python开发语言
##注入所需库importpandasaspdimportseabornassnsimportmatplotlib.pyplotaspltimportrandomimportnumpyasnpimporttimeimportshapfromsklearn.svmimportSVC#支持向量机分类器#fromsklearn.neighborsimportKNeighborsClassifier#K近
- python 打卡DAY27
Bugabooo
python开发语言
##注入所需库importpandasaspdimportseabornassnsimportmatplotlib.pyplotaspltimportrandomimportnumpyasnpimporttimeimportshap#fromsklearn.svmimportSVC#支持向量机分类器##fromsklearn.neighborsimportKNeighborsClassifier#
- 计算机视觉与深度学习 | Matlab实现INFO-BiTCN-SVM向量加权优化算法优化双向时间卷积神经网络结合支持向量机时间序列预测,含优化前后对比(Matlab完整源码和数据)
单北斗SLAMer
cnnlstmmatlab深度学习机器学习
以下是一个基于Matlab2023b实现的INFO-BiTCN-SVM时间序列预测系统的完整代码框架,包含智能优化算法、双向时间卷积网络与支持向量机的混合模型以及多指标评估体系。代码经过模块化设计,可直接运行并复现实验结果。%%主程序:INFO-BiTCN-SVM时间序列预测系统clc;clear;closeall;warningoff;%设置随机种子保证可重复性rng(2024);%加载/生成仿
- sklearn基础教程:从入门到精通
洛秋_
机器学习
文章目录sklearn基础教程:从入门到精通一、sklearn简介二、安装与配置三、数据预处理数据导入数据清洗特征选择数据标准化与归一化四、常用模型介绍与应用线性回归逻辑回归决策树支持向量机K近邻算法随机森林集成学习五、模型评估与调优交叉验证网格搜索模型评估指标六、实战案例波士顿房价预测手写数字识别客户流失预测七、测试接口与详细解释单元测试接口测试八、总结个人博客【洛秋小站】洛秋资源小站【洛秋资源
- 基于支持向量机(SVM)的P300检测分类
jllllyuz
支持向量机分类机器学习
基于支持向量机(SVM)的P300检测分类MATLAB实现,包含数据预处理、特征提取和分类评估流程:%%P300检测分类完整流程(SVM实现)clc;clear;closeall;%%1.数据加载与模拟生成(实际应用需替换为真实数据)%生成模拟EEG数据(实际应加载真实数据)[sampleRate,numChannels,numTrials,trialLength]=deal(250,32,200
- 分类预测 | Matlab实现SSA-SVM麻雀算法优化支持向量机多特征分类预测
Matlab算法改进和仿真定制工程师
算法分类matlab
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍摘要:支持向量机(SVM)作为一种强大的机器学习算法,在模式识别和分类预测领域展现出优异的性能。然而,SVM的性能高度依赖于其参数的选取,而参数优化是一个复杂且耗时的过程。本文提出了一种基于麻雀搜索算法(S
- 机器学习:支持向量机(SVM)的进阶理解
码记大虾
支持向量机机器学习人工智能
1.数学基础:硬间隔SVM的优化问题2.拉格朗日对偶与支持向量3.软间隔SVM:处理噪声与重叠其中是惩罚参数,控制对误分类的容忍度:越大,分类越严格(间隔越小,可能过拟合)。越小,允许更多错误(间隔越大,可能欠拟合)。对偶问题软间隔的对偶形式与硬间隔类似,但约束变为:0≤≤4.核技巧(KernelTrick)5.SVM的优化算法6.SVM的扩展与变种多类SVM:通过“一对多”(One-vs-Res
- 机器学习:支持向量机
码记大虾
机器学习支持向量机机器学习人工智能
目录SVM的基本概念“支持向量”是什么?最大间隔的概念:让分界线尽可能远离所有点处理非线性:核技巧(KernelTrick)软间隔:允许少量错误应用场景和优缺点形象总结SVM的基本概念支持向量机(SupportVectorMachine,SVM)是一种用于分类和回归的监督学习算法(主要用于分类问题,但也可以用于回归)。核心思想是找到一个最优的超平面(即是"最优分界线")来分开不同类别的数据点。(超
- OpenCV专利收费免费模块介绍
ice_junjun
opencv人工智能计算机视觉
一、核心模块(免费,商业/非商业均可使用)ML模块(机器学习)功能:支持向量机(SVM)、K均值聚类、神经网络(ANN)等。收费状态:免费。属于OpenCV主库,遵循Apache2.0许可。依据:官方文档及社区确认。DNN模块(深度学习)功能:加载Caffe、TensorFlow模型,前向传播推理。收费状态:免费。核心模块,无专利或收费限制。依据:官方开源声明。Flann模块(快速近似最近邻搜索)
- ML 作业代写 | 统计学习 Statistical Learning (using R) | 深度学习 Deep Learning (using Python)
王平渊
python开发语言
目录Ⅰ.统计学习StatisticalLearning(usingR)1.SupportVectorMachines支持向量机2.UnsupervisedLearning无监督学习Ⅱ.深度学习DeepLearning(usingPython)3.MultilayerPerceptron(MLP,다층퍼셉트론,多层感知器)4.ConvolutionalNeuralNetworks(합성곱신경망,卷积
- 26:支持向量机
Echo``
日常笔记支持向量机机器学习人工智能计算机视觉算法
1.支持向量机介绍:支持向量机(SupportVectorMachine,SVM)是CorinnaCortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别表现出许多特有的优势。支持向量机原理:2.1在n维空间中找到一个分类超平面,将空间上的点分类,虚线上的点叫做支持向量机SupprotVerctor,中间红线叫超级平面,SVM目的是拉大所有点到超级平面的距离。【线性分
- 机器学习-支持向量机(SVM) -回归-python scikit-learn
Quest for Knowledge
机器学习python机器学习python支持向量机
机器学习-支持向量机-回归前言1.导入模块2.导入数据3.数据预处理4.训练支持向量回归器5.评价支持向量回归6.改进支持向量回归模型总结前言支持向量机是一种用于回归、分类和检测异常值的监督学习算法。支持向量机是经典机器学习中非常强大的模型之一,适用于处理复杂的高维数据集。支持向量机支持不同的核(线性、多项式、径向基函数(rbf)和sigmoid),支持向量机可以处理不同类型的数据集,包括线性和非
- 使用Python和scikit-learn实现支持向量机(SVM)
01_6
pythonscikit-learn支持向量机回归算法机器学习人工智能
支持向量机(SupportVectorMachine,SVM)是一种强大的监督学习算法,广泛用于分类和回归问题。它能够有效处理线性和非线性数据,并在复杂数据集中表现出色。本文将介绍如何使用Python和scikit-learn库实现SVM,以及如何通过可视化不同参数设置来理解其工作原理。一、什么是支持向量机(SVM)?支持向量机是一种二类分类模型,它的基本思想是在特征空间中找到一个最优的超平面,能
- 机器学习实操 第一部分 机器学习基础 第5章 支持向量机(SVM)
odoo中国
人工智能机器学习支持向量机人工智能
机器学习实操第一部分机器学习基础第5章支持向量机(SVM)内容概要第5章深入介绍了支持向量机(SVM),这是一种功能强大且应用广泛的机器学习模型。SVM适用于线性或非线性分类、回归以及noveltydetection。本章详细讲解了SVM的核心概念、训练方法以及在不同任务中的应用。通过理论和实践相结合的方式,读者将掌握如何使用SVM解决实际问题。主要内容线性SVM分类硬间隔分类:在数据线性可分的情
- 手把手教你学Simulink-无人机--支持向量机(SVM)分类器训练与部署
小蘑菇二号
无人机支持向量机算法matlabsimulink
目录一、背景介绍支持向量机(SVM)及其应用场景关键挑战二、所需工具和环境三、步骤详解步骤1:准备数据集步骤2:划分训练集和测试集步骤3:训练SVM分类器(1)选择核函数(2)模型优化步骤4:评估模型性能步骤5:集成到Simulink步骤6:设置仿真参数步骤7:验证与分析(1)观察仿真结果(2)评估系统性能四、总结支持向量机(SupportVectorMachine,SVM)是一种广泛使用的监督学
- 植被参数遥感反演技术革命!AI+Python支持向量机/随机森林/神经网络/CNN/LSTM/迁移学习在植被参数反演中的实战应用与优化
小艳加油
农林生态植被参数反演PythonAI大模型
在全球气候变化与生态环境监测的重要需求下,植被参数遥感反演作为定量评估植被生理状态、结构特征及生态功能的核心技术,正面临诸多挑战。随着遥感技术的发展,数据复杂度不断提升,模型精度的要求也越来越高。同时,多源异构数据的融合成为了一个亟待解决的问题。这些挑战对传统遥感反演方法提出了严峻的考验。人工智能技术为遥感反演带来新机遇幸运的是,人工智能(AI)技术的快速发展,尤其是机器学习与深度学习算法的突破,
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息