- deepseek:2025年Java面试必刷高频LeetCode题目
Alexon Xu
java面试leetcode
以下是2025年Java面试中高频LeetCode题目分类及对应链接,结合大厂实际考察频率整理:一、链表类反转链表(Easy)迭代法与递归实现双解,掌握三指针操作环形链表检测(Easy)快慢指针经典应用,延伸考察环入口点计算合并K个排序链表(Hard)优先队列解法时间复杂度O(NlogK)相交链表(Easy)双指针数学技巧:a+c+b=b+c+a删除链表的倒数第N个节点(Medium)快慢指针+虚
- Serverless架构下的持续交付实践
软件工程实践
软件工程最佳实践AI软件构建大数据系统架构serverless架构运维ai
Serverless架构下的持续交付实践关键词:Serverless架构、持续交付、DevOps、无服务器计算、自动化部署摘要:本文深入探讨了Serverless架构下的持续交付实践。首先介绍了Serverless架构和持续交付的背景知识,接着解释了相关核心概念及其关系,详细阐述了核心算法原理与操作步骤,通过数学模型加深理解,结合实际项目案例展示了代码实现与解读,探讨了实际应用场景,推荐了相关工具
- Unity纹理的性能优化
东邪丶
游戏开发图形学/渲染unity性能优化游戏引擎纹理贴图
https://developer.unity.cn/projects/6482ba86edbc2a116e4f27c1在Unity的储存方式大部分的纹理,Unity都会保存两份像素数据的副本:GPU内存:对应的数据对象为RenderTexture,是渲染所需的数据CPU内存:对应的数据对象为Texture,属于可选数据,又被成为可读纹理,用于读取/写入/控制像素数据在Unity不同位置的像素数据
- 重排利器:行列式点过程(DPP)在推荐系统中的应用
Jay Kay
推荐算法数学建模推荐算法
在推荐系统的重排阶段,我们常面临结果同质化问题——精排结果相似物料扎堆,导致用户体验单调。行列式点过程(DeterminantalPointProcesses,DPP)通过数学建模相关性与多样性的平衡,成为解决该问题的经典方案。一、DPP的核心思想DPP将推荐列表视为一个点过程,其核心是计算子集出现的概率。给定候选集(Z)(精排输出的Top-N物料),DPP定义子集(Y\subseteqZ)出现的
- 非关系型数据库在数据库领域的崛起与应用
数据库管理艺术
数据库专家之路大数据AI人工智能MCP&AgentSQL实战数据库nosql网络ai
非关系型数据库在数据库领域的崛起与应用关键词:非关系型数据库、关系型数据库、崛起原因、应用场景、数据库领域摘要:本文主要探讨了非关系型数据库在数据库领域的崛起与应用。首先介绍了非关系型数据库的背景,包括目的、预期读者等内容。接着详细解释了非关系型数据库、关系型数据库等核心概念,并阐述了它们之间的关系。然后深入讲解了非关系型数据库的核心算法原理、数学模型和公式。通过项目实战展示了非关系型数据库的实际
- AI优化算法实战:使用粒子群优化求解复杂工程问题
AI学长带你学AI
ai
AI优化算法实战:使用粒子群优化求解复杂工程问题关键词:粒子群优化(PSO)、全局优化、工程问题、智能算法、参数调优摘要:本文以“鸟群觅食”为灵感来源,深入浅出地讲解粒子群优化(ParticleSwarmOptimization,PSO)算法的核心原理,并通过机械结构轻量化设计的实战案例,展示其在复杂工程问题中的应用。文章从算法起源到数学模型,从代码实现到工程落地,层层拆解技术细节,帮助读者快速掌
- 深度剖析AI人工智能在自动驾驶中的系统优化
AI云原生与云计算技术学院
人工智能自动驾驶机器学习ai
深度剖析AI人工智能在自动驾驶中的系统优化关键词:AI人工智能、自动驾驶、系统优化、传感器融合、决策算法摘要:本文深入探讨了AI人工智能在自动驾驶系统中的优化问题。从自动驾驶的背景入手,详细解释了相关核心概念,如传感器、决策算法等。阐述了这些核心概念之间的关系,介绍了核心算法原理和具体操作步骤,还通过数学模型和公式进行了理论支持。给出了项目实战案例,分析了实际应用场景,推荐了相关工具和资源,最后探
- 量化价值投资入门:Fama-French三因子模型详解与实战应用
量化价值投资入门到精通
ai
量化价值投资入门:Fama-French三因子模型详解与实战应用关键词:量化投资、Fama-French三因子模型、价值投资、因子投资、资产定价、Python实现、投资组合管理摘要:本文深入解析Fama-French三因子模型的理论基础、数学原理和实际应用。作为现代金融学最重要的资产定价模型之一,三因子模型通过市场因子、规模因子和价值因子解释股票收益差异。我们将从模型起源开始,详细讲解其数学表达和
- 暑假复习篇之运算与逻辑
清梚不喝粥
25暑假java算法后端
运算符算术运算符:+-*/%(取余)【优先级与数学上的优先级一致】赋值运算符:=、+=、-=、*=、/=、%=、++、--比较运算符:==、!=、>、=、>(向右位移)>>>(无符号向右位移)<<(向左位移)位运算符:&(按位与)、|(按位或)、^(按位异或)运算符:①一个浮点与整数运算时的结果还是浮点数②一个整数除另一个整数的结果还是整数整除③注意不同数据类型的常规类型【注意范围问题】赋值运算符
- 从 “啃书焦虑” 到 “项目通关”:NLP 学习的破局之道
木旭林晖
自然语言处理学习人工智能
嘿,你好。在CSDN上潜水这么久,我总能看到很多像你我当年一样,怀揣着NLP大厂梦的同学。我猜,你的收藏夹里一定塞满了“NLP必读清单”,书架上可能还放着那本厚得像砖头一样的《统计学习方法》或者“龙书”。每天深夜,你可能都在跟一个又一个复杂的数学公式死磕。什么最大熵模型、什么CRF(条件随机场)的推导……你觉得自己离“精通”越来越近,但心里却越来越慌。为什么慌?因为你打开招聘软件,看到JD(职位描
- go build -gcflags 参数学习
岳来
golanggolang学习开发语言
文章目录一、常用编译选项二、使用模式与包匹配规则三、应用场景与注意事项四、其他相关参数五、删除-gcflagsall=-N-l对构建的影响参考文档gobuild的-gcflags参数用于向Go编译器(gotoolcompile)传递额外选项,控制编译行为。其格式为-gcflags="[pattern=]arglist",其中pattern定义作用范围,arglist是空格分隔的编译选项。以下是关键
- 什么是 PoW(工作量证明,Proof of Work)
MonkeyKing.sun
区块链
共识算法(ConsensusAlgorithm)是区块链的“心脏”,它决定了多个节点在没有中央机构的前提下,如何就“谁来记账”达成一致。什么是PoW(工作量证明,ProofofWork)定义:工作量证明(ProofofWork,简称PoW)是一种共识机制,要求节点通过解决一个高难度数学问题,来获得记账权。第一个算出答案的节点获得“打包交易→生成区块→获取奖励”的权利。它是比特币、以太坊(1.0)等
- 实现make_power_of_two函数
洞阳
c++面试c++
目录代码make_power_of_two函数解析:将数值转换为大于等于它的最小2的幂一、函数功能与核心逻辑二、代码实现与逐行解析三、逐步骤原理解析四、位运算的数学原理五、不同输入的转换示例六、算法复杂度与适用场景七、与其他实现方式的对比八、注意事项总结代码该函数将任意n转换为大于等于n的最小2的幂(如n=10→16,n=16→16)size_tmake_power_of_two(size_tn)
- 人工智能大模型原理与应用实战:大模型在金融风控中的应用
AI天才研究院
LLM大模型落地实战指南大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
文章目录人工智能大模型原理与应用实战:大模型在金融风控中的应用01.背景介绍1.1金融风控的挑战1.2大模型的优势2.核心概念与联系2.1大模型在金融风控中的应用场景2.2大模型与传统风控技术的结合3.核心算法原理具体操作步骤3.1基于大模型的欺诈检测3.2基于大模型的信用评估4.数学模型和公式详细讲解举例说明4.1逻辑回归模型4.2XGBoost模型5.项目实践:代码实例和详细解释说明5.1基于
- 浅谈卷积神经网络(CNN)
cyc&阿灿
cnn人工智能神经网络
卷积神经网络(ConvolutionalNeuralNetworks,CNN)作为深度学习领域最具影响力的架构之一,已在计算机视觉、自然语言处理、医学影像分析等领域取得了革命性突破。本文将系统全面地剖析CNN的核心原理、关键组件、经典模型、数学基础、训练技巧以及最新进展,通过理论解析与代码实践相结合的方式,帮助读者深入掌握这一重要技术。一、CNN基础与核心思想1.1传统神经网络的局限性在处理图像等
- JavaScript 核心对象深度解析:Math、Date 与 String
小宁爱Python
前端javascript开发语言ecmascript
JavaScript作为Web开发的核心语言,提供了丰富的内置对象来简化编程工作。本文将深入探讨三个重要的内置对象:Math、Date和String,通过详细的代码示例和综合案例帮助你全面掌握它们的用法。一、Math对象Math对象提供了一系列静态属性和方法,用于执行各种数学运算,无需实例化即可使用。常用属性:console.log(Math.PI);//圆周率:3.141592653589793
- 从入门到精通:前端工程师必学的 JSON 全解析
前端视界
前端json状态模式ai
从入门到精通:前端工程师必学的JSON全解析关键词:JSON、前端工程师、数据交换、JavaScript、数据格式摘要:本文围绕前端工程师必学的JSON展开全面解析。从JSON的基本概念、背景知识入手,深入探讨其核心原理、算法实现、数学模型等方面。通过详细的代码示例和实际应用场景分析,帮助前端工程师从入门到精通掌握JSON的使用。同时,提供了丰富的学习资源、开发工具和相关论文推荐,最后对JSON的
- 【网络安全】网络安全中的离散数学
flyair_China
安全架构
一、离散数学核心知识点与网络安全映射1.数论(NumberTheory)知识点安全应用场景实例说明质因数分解RSA公钥加密大整数分解难题(2048位密钥需数万年破解)模运算Diffie-Hellman密钥交换利用(gamodp)实现安全协商欧拉定理RSA加密/解密me*d≡m(modn)保障解密还原中国剩余定理高效解密优化RSA-CRT加速解密运算达70%2.代数结构(AlgebraicStruc
- 机器学习中的数学:数学建模常用知识点-1
数字化与智能化
机器学习中的数学机器学习凸函数泰勒公式Jensen不等式
一、凸函数1、凸函数讲解设函数f(x)是定义在区间X上的函数,若对于区间上任意两点x1、x2和任意实数��∈(0,1),总有如下表达式成立:则称为f(x)是X上的凸函数;反之,如果下式成立:则称为f(x)在X上的凹函数。如图所示:Python实现凸函数:importnumpyasnpimportmatplotlib.pyplotasplt#定义凸函数defconvex_function(x):re
- 青少年编程与数学 01-012 通用应用软件简介 18 短视频平台
明月看潮生
编程与数学第01阶段青少年编程音视频编程与数学应用软件短视频
青少年编程与数学01-012通用应用软件简介18短视频平台一、什么是短视频平台(一)短视频平台的基本定义(二)短视频平台的工作原理(三)短视频平台的类型二、短视频平台的重要意义(一)为用户提供丰富的娱乐内容(二)推动数字内容创作的民主化(三)促进文化的传播与交流(四)提升用户互动性和社交性(五)推动数字经济的发展三、短视频平台主要产品(一)抖音1.软件功能2.特色3.市场地位和市场价值4.增值服务
- MATLAB算法实战应用案例精讲-【数模应用】主效应&交互效应&单独效应
林聪木
matlab算法开发语言
目录前言几个相关概念因素和水平主效应单纯主效应交互作用效应或影响(effect)因素之间的相互制约和影响两因素交互作用三因素及多因素交互作用几个高频面试题目什么是主效应,交互效应,单独效应?回归分析中是必须加入控制变量的吗?如果假如控制变量之后,显著性不高了该怎么办?控制变量说明控制变量选择控制变量处理主效应和交互效应的联系与区别如何依据主效应和交互效应描述结果?算法原理数学模型主效应二分变量交互
- 2024年03月CCF-GESP编程能力等级认证C++编程五级真题解析
码农StayUp
c++青少年编程CCFGESP
本文收录于专栏《C++等级认证CCF-GESP真题解析》,专栏总目录:点这里。订阅后可阅读专栏内所有文章。一、单选题(每题2分,共30分)第1题唯一分解定理描述的内容是()?A.任意整数都可以分解为素数的乘积B.每个合数都可以唯一分解为一系列素数的乘积C.两个不同的整数可以分解为相同的素数乘积D.以上都不对答案:B【考纲知识点】唯一分解定理【解析】任何一个大于1的整数n都可以分解成若干个素因数的连
- Word 中批量转换 LaTeX 公式为标准数学格式的终极方法(附宏设置教程)
小灰兔的小白兔
wordc#开发语言
在学术写作中,我们常常需要将LaTeX格式的公式插入到Word文档中。但如果你有一大段公式使用$...$或LaTeX命令,手动转换无疑非常耗时。本文将介绍一种“一键转换所有LaTeX公式为Word数学公式”的方法,只需设置一次宏,后续即可像“格式刷”一样使用!原理简介MicrosoftWord实际上内置了对LaTeX的识别能力,但需要配合“公式编辑框”使用。借助宏(Macro)功能,我们可以批量触
- 面试官是怎么筛选简历的
慕慕涵雪月光白
算法
在互联网行业工作十几年,管理过团队,做过经理、总监,看过几千份简历,面试过几百位程序员,包括前端、后端、客户端,也面试过其他岗位,比如产品、设计、运营等。这个过程中最耗时的就是筛简历了,现在一个岗位放出去能收到几百份简历,人力资源会筛掉9成,到我这又会筛掉剩下的9成,最终能进入面试环节的可能就3~5个人。这中间最重要的就是简历,它的质量跟你的求职成功率强相关。所以我想从面试官的角度来说一说写简历要
- 【机器学习&深度学习】前馈神经网络(单隐藏层)
一叶千舟
深度学习【理论】机器学习深度学习神经网络
目录一、什么是前馈神经网络?二、数学表达式是什么?三、为什么需要“非线性函数”?四、NumPy实现前馈神经网络代码示例五、运行结果六、代码解析6.1初始化部分6.2前向传播6.3计算损失(Loss)6.4反向传播(手动)6.5更新参数(梯度下降)6.6循环训练七、训练过程可视化(思维图)八、关键问题答疑Q1:为什么需要隐藏层?Q2:ReLU是干嘛的?Q3:学习率怎么选?九、总结学习建议在机器学习中
- 《三生原理》如何优化注意力机制?
AI辅助创作:《三生原理》通过融合《周易》哲学的数理模型,对注意力机制进行了多维度优化,主要体现在动态计算重构、位置编码革新与训练效率提升三方面,具体路径如下:一、动态筛网替代传统注意力计算三级筛网分层过滤初级筛网:基于素数参数化公式(p=3(2n+1)+2(2n+m+1))预判无效特征交互,压缩注意力计算范围,减少多头冗余计算45%。中级判据:引入五行属性权重动态分配机制,依据模
- 《三生原理》如何解决长程依赖问题?
葫三生
三生学派人工智能平面线性代数概率论算法
AI辅助创作:《三生原理》通过融合《周易》的生成哲学与分形数学,创新性地重构了序列建模的逻辑框架,有效缓解长程依赖问题,其核心技术路径如下:一、八卦拓扑位置编码替代正弦编码符号系统的动态映射将伏羲八卦的拓扑结构(乾☰、坤☷等)转化为位置矩阵,通过模12余数配对法则建立位置关联性:阳爻(⚊)映射奇数位,阴爻(⚋)映射偶数位,形成周期性位置感知网格在512长度序列中,位置关系捕捉准确率提升2
- 随机近似算法:步长序列选择的理论与金融实践
随机近似算法:步长序列选择的理论与金融实践摘要随机近似算法作为统计学习与优化的核心工具,其收敛性与稳定性高度依赖步长序列的设计。本文系统阐述步长序列的理论约束与工程选择策略,并结合金融波动率估计场景,展示算法在动态系统参数估计中的实践价值。1.随机近似算法的数学框架随机近似算法通过随机样本的迭代更新逼近目标参数,其核心迭代式为:θn+1=θn+an(Yn−g(θn))\theta_{n+1}=\t
- 衡水中学状元数学学习资料完整攻略
向沙托夫问好
本文还有配套的精品资源,点击获取简介:《状元全科笔记衡水内部资料数学学习文档》提供了一个全面的数学学习资源,旨在通过衡水中学的教学经验和方法提升学生的数学成绩。资料包含基础知识、题型解析、模块训练、思维拓展和学习方法,引导学生深入理解数学概念,培养逻辑思维和解决问题的能力。文档结构清晰,内容详实,附带使用指南,帮助学生系统提升数学素养,实现学习效率和成绩的双重提高。1.状元学习方法分享在追求卓越成
- 模型性能评估实战:解密大模型准确率与召回率的计算逻辑与业务权衡
在AI项目落地过程中,模型性能评估是关键一步。想必大家都听过这样的案例:某医疗AI项目中,一个在测试集上准确率达到98%的肺癌筛查模型,实际部署后却遗漏了20%的早期癌变患者。无独有偶,某银行风控系统中,一个标榜着99.5%“高准确率”的模型,实际使用中却放过了90%的信用卡欺诈行为。这些案例都给我们敲响了警钟,模型性能评估中存在不少被忽视的致命盲区,今天就让我们一同深入探寻这其中的奥秘。第一部分
- [星球大战]阿纳金的背叛
comsci
本来杰迪圣殿的长老是不同意让阿纳金接受训练的.........
但是由于政治原因,长老会妥协了...这给邪恶的力量带来了机会
所以......现代的地球联邦接受了这个教训...绝对不让某些年轻人进入学院
- 看懂它,你就可以任性的玩耍了!
aijuans
JavaScript
javascript作为前端开发的标配技能,如果不掌握好它的三大特点:1.原型 2.作用域 3. 闭包 ,又怎么可以说你学好了这门语言呢?如果标配的技能都没有撑握好,怎么可以任性的玩耍呢?怎么验证自己学好了以上三个基本点呢,我找到一段不错的代码,稍加改动,如果能够读懂它,那么你就可以任性了。
function jClass(b
- Java常用工具包 Jodd
Kai_Ge
javajodd
Jodd 是一个开源的 Java 工具集, 包含一些实用的工具类和小型框架。简单,却很强大! 写道 Jodd = Tools + IoC + MVC + DB + AOP + TX + JSON + HTML < 1.5 Mb
Jodd 被分成众多模块,按需选择,其中
工具类模块有:
jodd-core &nb
- SpringMvc下载
120153216
springMVC
@RequestMapping(value = WebUrlConstant.DOWNLOAD)
public void download(HttpServletRequest request,HttpServletResponse response,String fileName) {
OutputStream os = null;
InputStream is = null;
- Python 标准异常总结
2002wmj
python
Python标准异常总结
AssertionError 断言语句(assert)失败 AttributeError 尝试访问未知的对象属性 EOFError 用户输入文件末尾标志EOF(Ctrl+d) FloatingPointError 浮点计算错误 GeneratorExit generator.close()方法被调用的时候 ImportError 导入模块失
- SQL函数返回临时表结构的数据用于查询
357029540
SQL Server
这两天在做一个查询的SQL,这个SQL的一个条件是通过游标实现另外两张表查询出一个多条数据,这些数据都是INT类型,然后用IN条件进行查询,并且查询这两张表需要通过外部传入参数才能查询出所需数据,于是想到了用SQL函数返回值,并且也这样做了,由于是返回多条数据,所以把查询出来的INT类型值都拼接为了字符串,这时就遇到问题了,在查询SQL中因为条件是INT值,SQL函数的CAST和CONVERST都
- java 时间格式化 | 比较大小| 时区 个人笔记
7454103
javaeclipsetomcatcMyEclipse
个人总结! 不当之处多多包含!
引用 1.0 如何设置 tomcat 的时区:
位置:(catalina.bat---JAVA_OPTS 下面加上)
set JAVA_OPT
- 时间获取Clander的用法
adminjun
Clander时间
/**
* 得到几天前的时间
* @param d
* @param day
* @return
*/
public static Date getDateBefore(Date d,int day){
Calend
- JVM初探与设置
aijuans
java
JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java虚拟机包括一套字节码指令集、一组寄存器、一个栈、一个垃圾回收堆和一个存储方法域。 JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台
- SQL中ON和WHERE的区别
avords
SQL中ON和WHERE的区别
数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户。 www.2cto.com 在使用left jion时,on和where条件的区别如下: 1、 on条件是在生成临时表时使用的条件,它不管on中的条件是否为真,都会返回左边表中的记录。
- 说说自信
houxinyou
工作生活
自信的来源分为两种,一种是源于实力,一种源于头脑.实力是一个综合的评定,有自身的能力,能利用的资源等.比如我想去月亮上,要身体素质过硬,还要有飞船等等一系列的东西.这些都属于实力的一部分.而头脑不同,只要你头脑够简单就可以了!同样要上月亮上,你想,我一跳,1米,我多跳几下,跳个几年,应该就到了!什么?你说我会往下掉?你笨呀你!找个东西踩一下不就行了吗?
无论工作还
- WEBLOGIC事务超时设置
bijian1013
weblogicjta事务超时
系统中统计数据,由于调用统计过程,执行时间超过了weblogic设置的时间,提示如下错误:
统计数据出错!
原因:The transaction is no longer active - status: 'Rolling Back. [Reason=weblogic.transaction.internal
- 两年已过去,再看该如何快速融入新团队
bingyingao
java互联网融入架构新团队
偶得的空闲,翻到了两年前的帖子
该如何快速融入一个新团队,有所感触,就记下来,为下一个两年后的今天做参考。
时隔两年半之后的今天,再来看当初的这个博客,别有一番滋味。而我已经于今年三月份离开了当初所在的团队,加入另外的一个项目组,2011年的这篇博客之后的时光,我很好的融入了那个团队,而直到现在和同事们关系都特别好。大家在短短一年半的时间离一起经历了一
- 【Spark七十七】Spark分析Nginx和Apache的access.log
bit1129
apache
Spark分析Nginx和Apache的access.log,第一个问题是要对Nginx和Apache的access.log文件进行按行解析,按行解析就的方法是正则表达式:
Nginx的access.log解析正则表达式
val PATTERN = """([^ ]*) ([^ ]*) ([^ ]*) (\\[.*\\]) (\&q
- Erlang patch
bookjovi
erlang
Totally five patchs committed to erlang otp, just small patchs.
IMO, erlang really is a interesting programming language, I really like its concurrency feature.
but the functional programming style
- log4j日志路径中加入日期
bro_feng
javalog4j
要用log4j使用记录日志,日志路径有每日的日期,文件大小5M新增文件。
实现方式
log4j:
<appender name="serviceLog"
class="org.apache.log4j.RollingFileAppender">
<param name="Encoding" v
- 读《研磨设计模式》-代码笔记-桥接模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 个人觉得关于桥接模式的例子,蜡笔和毛笔这个例子是最贴切的:http://www.cnblogs.com/zhenyulu/articles/67016.html
* 笔和颜色是可分离的,蜡笔把两者耦合在一起了:一支蜡笔只有一种
- windows7下SVN和Eclipse插件安装
chenyu19891124
eclipse插件
今天花了一天时间弄SVN和Eclipse插件的安装,今天弄好了。svn插件和Eclipse整合有两种方式,一种是直接下载插件包,二种是通过Eclipse在线更新。由于之前Eclipse版本和svn插件版本有差别,始终是没装上。最后在网上找到了适合的版本。所用的环境系统:windows7JDK:1.7svn插件包版本:1.8.16Eclipse:3.7.2工具下载地址:Eclipse下在地址:htt
- [转帖]工作流引擎设计思路
comsci
设计模式工作应用服务器workflow企业应用
作为国内的同行,我非常希望在流程设计方面和大家交流,刚发现篇好文(那么好的文章,现在才发现,可惜),关于流程设计的一些原理,个人觉得本文站得高,看得远,比俺的文章有深度,转载如下
=================================================================================
自开博以来不断有朋友来探讨工作流引擎该如何
- Linux 查看内存,CPU及硬盘大小的方法
daizj
linuxcpu内存硬盘大小
一、查看CPU信息的命令
[root@R4 ~]# cat /proc/cpuinfo |grep "model name" && cat /proc/cpuinfo |grep "physical id"
model name : Intel(R) Xeon(R) CPU X5450 @ 3.00GHz
model name :
- linux 踢出在线用户
dongwei_6688
linux
两个步骤:
1.用w命令找到要踢出的用户,比如下面:
[root@localhost ~]# w
18:16:55 up 39 days, 8:27, 3 users, load average: 0.03, 0.03, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
- 放手吧,就像不曾拥有过一样
dcj3sjt126com
内容提要:
静悠悠编著的《放手吧就像不曾拥有过一样》集结“全球华语世界最舒缓心灵”的精华故事,触碰生命最深层次的感动,献给全世界亿万读者。《放手吧就像不曾拥有过一样》的作者衷心地祝愿每一位读者都给自己一个重新出发的理由,将那些令你痛苦的、扛起的、背负的,一并都放下吧!把憔悴的面容换做一种清淡的微笑,把沉重的步伐调节成春天五线谱上的音符,让自己踏着轻快的节奏,在人生的海面上悠然漂荡,享受宁静与
- php二进制安全的含义
dcj3sjt126com
PHP
PHP里,有string的概念。
string里,每个字符的大小为byte(与PHP相比,Java的每个字符为Character,是UTF8字符,C语言的每个字符可以在编译时选择)。
byte里,有ASCII代码的字符,例如ABC,123,abc,也有一些特殊字符,例如回车,退格之类的。
特殊字符很多是不能显示的。或者说,他们的显示方式没有标准,例如编码65到哪儿都是字母A,编码97到哪儿都是字符
- Linux下禁用T440s,X240的一体化触摸板(touchpad)
gashero
linuxThinkPad触摸板
自打1月买了Thinkpad T440s就一直很火大,其中最让人恼火的莫过于触摸板。
Thinkpad的经典就包括用了小红点(TrackPoint)。但是小红点只能定位,还是需要鼠标的左右键的。但是自打T440s等开始启用了一体化触摸板,不再有实体的按键了。问题是要是好用也行。
实际使用中,触摸板一堆问题,比如定位有抖动,以及按键时会有飘逸。这就导致了单击经常就
- graph_dfs
hcx2013
Graph
package edu.xidian.graph;
class MyStack {
private final int SIZE = 20;
private int[] st;
private int top;
public MyStack() {
st = new int[SIZE];
top = -1;
}
public void push(i
- Spring4.1新特性——Spring核心部分及其他
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- 配置HiveServer2的安全策略之自定义用户名密码验证
liyonghui160com
具体从网上看
http://doc.mapr.com/display/MapR/Using+HiveServer2#UsingHiveServer2-ConfiguringCustomAuthentication
LDAP Authentication using OpenLDAP
Setting
- 一位30多的程序员生涯经验总结
pda158
编程工作生活咨询
1.客户在接触到产品之后,才会真正明白自己的需求。
这是我在我的第一份工作上面学来的。只有当我们给客户展示产品的时候,他们才会意识到哪些是必须的。给出一个功能性原型设计远远比一张长长的文字表格要好。 2.只要有充足的时间,所有安全防御系统都将失败。
安全防御现如今是全世界都在关注的大课题、大挑战。我们必须时时刻刻积极完善它,因为黑客只要有一次成功,就可以彻底打败你。 3.
- 分布式web服务架构的演变
自由的奴隶
linuxWeb应用服务器互联网
最开始,由于某些想法,于是在互联网上搭建了一个网站,这个时候甚至有可能主机都是租借的,但由于这篇文章我们只关注架构的演变历程,因此就假设这个时候已经是托管了一台主机,并且有一定的带宽了,这个时候由于网站具备了一定的特色,吸引了部分人访问,逐渐你发现系统的压力越来越高,响应速度越来越慢,而这个时候比较明显的是数据库和应用互相影响,应用出问题了,数据库也很容易出现问题,而数据库出问题的时候,应用也容易
- 初探Druid连接池之二——慢SQL日志记录
xingsan_zhang
日志连接池druid慢SQL
由于工作原因,这里先不说连接数据库部分的配置,后面会补上,直接进入慢SQL日志记录。
1.applicationContext.xml中增加如下配置:
<bean abstract="true" id="mysql_database" class="com.alibaba.druid.pool.DruidDataSourc