- Flume-HBase-Kafka
正在緩沖҉99%
kafkaFlumeHBase大数据
Flume-HBase-Kafka一、各自介绍1.Flume简介和特征2.HBase简介和特征3.Kafka简介和特征二、通过Flume读取日志文件写入到Kafka中在写入HBase各自作用一、各自介绍1.Flume简介和特征一、简介Flume是一个分布式、可靠、和高可用的海量日志聚合的系统,支持在系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方
- 大数据环境(单机版) Flume传输数据到Kafka
凡许真
大数据flumekafka数据采集
文章目录前言一、准备二、安装三、配置环境变量四、修改配置4.1、kafka配置4.2、Flume配置五、启动程序5.1、启动zk5.2、启动kafka5.3、启动flume六、测试6.1、启动一个kafka终端,用来消费消息6.2、写入日志其他前言flume监控指定目录,传输数据到kafka一、准备flume-1.10.1kafka_2.11-2.4.1zookeeper-3.4.13二、安装使用
- Kafka系列之:记录一次源头数据库刷数据,造成数据丢失的原因
快乐骑行^_^
KafkaKafka系列记录一次源头数据库刷数据造成数据丢失的原因
Kafka系列之:记录一次源头数据库刷数据,造成数据丢失的原因一、背景二、查看topic日志信息三、结论四、解决方法一、背景源头数据库在很短的时间内刷了大量的数据,部分数据在hdfs丢失了理论上debezium数据采集不会丢失,就需要排查数据链路某个节点是否有数据丢失。数据链路是:debezium——kafka——flume——hdfs根据经验定位数据在kafka侧丢失,下一面进一步确认是否数据在
- 强大的ETL利器—DataFlow3.0
lixiang2114
数据分析etlflumesqoop数据库数据仓库
产品开发背景DataFlow是基于应用数据流程的一套分布式ETL系统服务组件,其前身是LogCollector2.0日志系统框架,自LogCollector3.0版本开始正式更名为DataFlow3.0。目前常用的ETL工具Flume、LogStash、Kettle、Sqoop等也可以完成数据的采集、传输、转换和存储;但这些工具都不具备事务一致性。比如Flume工具仅能应用到通信质量无障碍的局域网
- 大数据-257 离线数仓 - 数据质量监控 监控方法 Griffin架构
m0_74823705
面试学习路线阿里巴巴大数据架构
点一下关注吧!!!非常感谢!!持续更新!!!Java篇开始了!目前开始更新MyBatis,一起深入浅出!目前已经更新到了:Hadoop(已更完)HDFS(已更完)MapReduce(已更完)Hive(已更完)Flume(已更完)Sqoop(已更完)Zookeeper(已更完)HBase(已更完)Redis(已更完)Kafka(已更完)Spark(已更完)Flink(已更完)ClickHouse(已
- 数据仓库与数据挖掘记录 三
匆匆整棹还
数据挖掘
数据仓库的数据存储和处理数据的ETL过程数据ETL是用来实现异构数据源的数据集成,即完成数据的抓取/抽取、清洗、转换.加载与索引等数据调和工作,如图2.2所示。1)数据提取(Extract)从多个数据源中获取原始数据(如数据库、日志文件、API、云存储等)。数据源可能是结构化(如MySQL)、半结构化(如JSON)、非结构化(如文本)。关键技术:SQL查询、Web爬虫、日志采集工具(如Flume)
- 【大数据技术】搭建完全分布式高可用大数据集群(Flume)
Want595
Python大数据采集与分析大数据分布式flume
搭建完全分布式高可用大数据集群(Flume)apache-flume-1.11.0-bin.tar.gz注:请在阅读本篇文章前,将以上资源下载下来。写在前面本文主要介绍搭建完全分布式高可用集群Flume的详细步骤。注意:统一约定将软件安装包存放于虚拟机的/software目录下,软件安装至/opt目录下。安装Flume用finalshell将压缩包上传到虚拟机master的/software目录下
- 计算机毕业设计hadoop+spark+hive新能源汽车数据分析可视化大屏 汽车推荐系统 新能源汽车推荐系统 汽车爬虫 汽车大数据 机器学习 大数据毕业设计 深度学习 知识图谱 人工智能
qq+593186283
hadoop大数据人工智能
(1)设计目的本次设计一个基于Hive的新能源汽车数据仓管理系统。企业管理员登录系统后可以在汽车保养时,根据这些汽车内置传感器传回的数据分析其故障原因,以便维修人员更加及时准确处理相关的故障问题。或者对这些数据分析之后向车主进行预警提示车主注意保养汽车,以提高汽车行驶的安全系数。(2)设计要求利用Flume进行分布式的日志数据采集,Kafka实现高吞吐量的数据传输,DateX进行数据清洗、转换和整
- python消费kafka数据nginx日志实时_基于nginx+flume+kafka+mongodb实现埋点数据采集
weixin_39534208
名词解释埋点其实就是用于记录用户在页面的一些操作行为。例如,用户访问页面(PV,PageViews)、访问页面用户数量(UV,UserViews)、页面停留、按钮点击、文件下载等,这些都属于用户的操作行为。开发背景我司之前在处理埋点数据采集时,模式很简单,当用户操作页面控件时,前端监听到操作事件,并根据上下文环境,将事件相关的数据通过接口调用发送至埋点数据采集服务(简称ets服务),ets服务对数
- 大数据-267 实时数仓 - ODS Lambda架构 Kappa架构 核心思想
m0_74823336
面试学习路线阿里巴巴大数据架构
点一下关注吧!!!非常感谢!!持续更新!!!Java篇开始了!MyBatis更新完毕目前开始更新Spring,一起深入浅出!目前已经更新到了:Hadoop(已更完)HDFS(已更完)MapReduce(已更完)Hive(已更完)Flume(已更完)Sqoop(已更完)Zookeeper(已更完)HBase(已更完)Redis(已更完)Kafka(已更完)Spark(已更完)Flink(已更完)Cl
- nginx+flume网络流量日志实时数据分析实战_日志数据分析(1)
2401_84182578
程序员nginxflume数据分析
得到visits模型hadoopjar/export/data/mapreduce/web_log.jarcn.itcast.bigdata.weblog.clickstream.ClickStreamVisit网络日志数据分析-数据加载对于日志数据的分析,Hive也分为三层:ods层、dw层、app层创建数据库createdatabaseifnotexistsweb_log_ods;create
- 【大数据入门核心技术-Flume】(二)Flume安装部署
forest_long
大数据技术入门到21天通关bigdatahadoop大数据hbaseflume
目录一、准备工作1、基本Hadoop环境安装2、下载安装包二、安装1、解压2、修改环境变量3、修改并配置flume-env.sh文件4、验证是否安装成功一、准备工作1、基本Hadoop环境安装参考Hadoop安装【大数据入门核心技术-Hadoop】(五)Hadoop3.2.1非高可用集群搭建【大数据入门核心技术-Hadoop】(六)Hadoop3.2.1高可用集群搭建2、下载安装包官方网址:
- java.io.FileNotFoundException: /tmp/log/flume-ng/flume.log (Permission denied)
海洋 之心
Flume问题解决Hadoop问题解决javaflume开发语言zookeeper大数据
文章目录问题描述:原因分析:解决方案:问题描述:使用Flume将本地文件监控上传到HDFS上时出现log4j:ERRORsetFile(null,true)callfailed.java.io.FileNotFoundException:/tmp/log/flume-ng/flume.log(Permissiondenied)log4j:ERRORsetFile(null,true)callfai
- flume系列之:消费Kafka集群Topic报错java.io.IOException: Can‘t resolve address: data03:9092
快乐骑行^_^
flumeflume系列消费Kafka集群TopicOExceptionresolveaddress
flume系列之:消费Kafka集群Topic报错java.io.IOException:Can'tresolveaddress:data03:9092Causedby:java.nio.channels.UnresolvedAddressException一、flume消费Kafka集群Topic报错二、报错原因三、解决方法一、flume消费Kafka集群Topic报错21Sep202214:5
- 基于Spark的实时计算服务的流程架构
小小搬运工40
spark大数据
基于Spark的实时计算服务的流程架构通常涉及多个组件和步骤,从数据采集到数据处理,再到结果输出和监控。以下是一个典型的基于Spark的实时计算服务的流程架构:1.数据源数据源是实时计算服务的起点,常见的数据源包括:消息队列:如Kafka、RabbitMQ、AmazonKinesis等。日志系统:如Flume、Logstash等。传感器数据:物联网设备产生的数据流。数据库变更数据捕获(CDC):如
- 大数据开发的底层逻辑是什么?
瑰茵
大数据
大数据开发的底层逻辑主要围绕数据的生命周期进行,包括数据的采集、存储、处理、分析和可视化等环节。以下是大数据开发的一些关键底层逻辑:数据采集:目的:从不同的数据源(如日志文件、数据库、传感器等)收集数据。方法:使用数据采集工具(如ApacheFlume、ApacheKafka、ApacheSqoop)来捕获和传输数据。数据存储:目的:将收集到的数据存储在可靠且可扩展的存储系统中。方法:使用分布式文
- flume+ Elasticsearch +kibana环境搭建及讲解
pincharensheng
大数据flumekibanaelasticsearch分布式
1、软件介绍1.1、flume1.1.1、flume介绍1)flume概念1、flume是一个分布式的日志收集系统,具有高可靠、高可用、事务管理、失败重启等功能。数据处理速度快,完全可以用于生产环境;2、flume的核心是agent。agent是一个java进程,运行在日志收集端,通过agent接收日志,然后暂存起来,再发送到目的地;3、agent里面包含3个核心组件:source、channel
- Hive数据仓库中的数据导出到MySQL的数据表不成功
sin2201
出错问题数据仓库hivemysql
可能的原因:(1)没有下载flume和sqoop(2)权限问题:因为MySQL数据库拒绝了root用户从hadoop3主机的连接请求,root用户没有从hadoop3主机进行连接的权限解决:通过MySQL的授权命令来授予权限mysql>GRANTALLPRIVILEGESONsqoop_weblog.*TO'root'@'hadoop3'IDENTIFIEDBY'2020';QueryOK,0ro
- python消费kafka数据nginx日志实时_Openresty+Lua+Kafka实现日志实时采集
weixin_39997311
简介在很多数据采集场景下,Flume作为一个高性能采集日志的工具,相信大家都知道它。许多人想起Flume这个组件能联想到的大多数都是Flume跟Kafka相结合进行日志的采集,这种方案有很多他的优点,比如高性能、高吞吐、数据可靠性等。但是我们如果要求对日志进行实时的采集,这显然不是一个好的解决方案。原因如下:就目前来说,Flume能支持实时监控一个目录的数据文件,一旦对某个目录的文件采集完成,就会
- openresty+lua实现实时写kafka
sky@梦幻未来
大数据openrestynginxopenrestylua
一.背景在使用openresty+lua+nginx+flume,通过定时切分日志发送kafka的方式无法满足实时性的情况下,小编开始研究openresty+lua+nginx+kafka实时写kafka,从而达到数据实时性,和高性能保证。二.实现1.openresty安装nginx,以及lua的使用请看博主上一篇博客https://blog.csdn.net/qq_29497387/articl
- SeaTunnel 与 DataX 、Sqoop、Flume、Flink CDC 对比
不二人生
#数据集成工具SeaTunnel
文章目录SeaTunnel与DataX、Sqoop、Flume、FlinkCDC对比同类产品横向对比2.1、高可用、健壮的容错机制2.2、部署难度和运行模式2.3、支持的数据源丰富度2.4、内存资源占用2.5、数据库连接占用2.6、自动建表2.7、整库同步2.8、断点续传2.9、多引擎支持2.10、数据转换算子2.11、性能2.12、离线同步2.13、增量同步&实时同步2.14、CDC同步2.15
- flume系列之:flume落cos
快乐骑行^_^
日常分享专栏flume系列
flume系列之:flume落cos一、参考文章二、安装cosjar包三、添加hadoop-cos的相关配置四、flume环境添加hadoop类路径五、使用cos路径六、启动/重启flume一、参考文章Kafka数据通过Flume存储到HDFS或COSflumetocos使用指南二、安装cosjar包将对应hadoop版本的hadoop-cos的jar包(hadoop-cos-{hadoop.ve
- Flume 简介01 作用 核心概念 事务机制 安装 配置入门实战
湖中屋
Flumeflume
Flume1.业务系统为什么会产生用户行为日志,怎么产生的用户行文日志:每一次访问的行为(访问、搜索)产生的日志记录用户行为日志的目的:1.商家会精准的给你呈现符合你的个人界面2.商家会给你个人添加用户标签,更加精准的分析埋点等2.flume用来做什么的(采集传输数据的,分布式的,可靠的)ApacheFlume是一个从可以收集例如日志,事件等数据资源,并将这些数量庞大的数据从各项数据资源中集中起来
- 大数据-257 离线数仓 - 数据质量监控 监控方法 Griffin架构
武子康
大数据离线数仓大数据数据仓库java后端hadoophive
点一下关注吧!!!非常感谢!!持续更新!!!Java篇开始了!目前开始更新MyBatis,一起深入浅出!目前已经更新到了:Hadoop(已更完)HDFS(已更完)MapReduce(已更完)Hive(已更完)Flume(已更完)Sqoop(已更完)Zookeeper(已更完)HBase(已更完)Redis(已更完)Kafka(已更完)Spark(已更完)Flink(已更完)ClickHouse(已
- kafka直接对接nginx
Lu_Xiao_Yue
nginxkafka
很多时候我们要对nginx产生的日志进行分析都是通过flume监控nginx产生的日志,通过flume把日志文件发送该kafka,flume作为生产者,但是这种方式的缺点就是可能效率会比较慢,除此之外还可以使用kafka直接对接nginx,nginx作为生产者,把log日志直接对接到kafka的某些分区中,这种方法的效率比较高,但是缺点就是可能会出现数据丢失,可以通过把nginx的日志进行一份给k
- 大数据新视界 --大数据大厂之大数据实战指南:Apache Flume 数据采集的配置与优化秘籍
青云交
大数据新视界数据库ApacheFlume数据采集安装部署配置优化高级功能大数据工具集成
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- nosql数据库技术与应用知识点
皆过客,揽星河
NoSQLnosql数据库大数据数据分析数据结构非关系型数据库
Nosql知识回顾大数据处理流程数据采集(flume、爬虫、传感器)数据存储(本门课程NoSQL所处的阶段)Hdfs、MongoDB、HBase等数据清洗(入仓)Hive等数据处理、分析(Spark、Flink等)数据可视化数据挖掘、机器学习应用(Python、SparkMLlib等)大数据时代存储的挑战(三高)高并发(同一时间很多人访问)高扩展(要求随时根据需求扩展存储)高效率(要求读写速度快)
- Flume:大规模日志收集与数据传输的利器
傲雪凌霜,松柏长青
后端大数据flume大数据
Flume:大规模日志收集与数据传输的利器在大数据时代,随着各类应用的不断增长,产生了海量的日志和数据。这些数据不仅对业务的健康监控至关重要,还可以通过深入分析,帮助企业做出更好的决策。那么,如何高效地收集、传输和存储这些海量数据,成为了一项重要的挑战。今天我们将深入探讨ApacheFlume,它是如何帮助我们应对这些挑战的。一、Flume概述ApacheFlume是一个分布式、可靠、可扩展的日志
- 解决flume在抽取不断产生的日志文件时,hdfs上出现很多小文件的问题
lzhlizihang
flumehdfs大数据
问题在使用flume时,需要编写conf文件,然后执行,明明sinks已经指定了roll的三个参数:a1.sinks.k1.hdfs.rollInterval=0(根据写入时间来切割)a1.sinks.k1.hdfs.rollSize=0(根据写入的文件大小来切割)a1.sinks.k1.hdfs.rollCount=0(根据Event数量来切割)其中0代表不根据其属性来切割文件但是hdfs上还会
- pyspark kafka mysql_数据平台实践①——Flume+Kafka+SparkStreaming(pyspark)
weixin_39793638
pysparkkafkamysql
蜻蜓点水Flume——数据采集如果说,爬虫是采集外部数据的常用手段的话,那么,Flume就是采集内部数据的常用手段之一(logstash也是这方面的佼佼者)。下面介绍一下Flume的基本构造。Agent:包含Source、Channel和Sink的主体,它是这3个组件的载体,是组成Flume的数据节点。Event:Flume数据传输的基本单元。Source:用来接收Event,并将Event批量传
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不