转载自:https://www.jianshu.com/p/71e6ef6c121b
最近看代码的时候需要弄明白tf.slice()的具体操作方法。去看了看官方的注释和例子还是一头雾水,就是看不明白这到底是怎么切的。于是搜了几个quora的帖子,终于搞懂了。下面举3个例子解释一下切割原理。
首先看一眼源代码注释是怎么说的:
This operation extracts a slice of size `size` from a tensor `input` starting at the location specified by `begin`. The slice `size` is represented as tensor shape, where `size[i]` is the number of elements of the 'i'th dimension of `input` that you want to slice. The starting location (`begin`) for the slice is represented as an offset in each dimension of `input`. In other words, `begin[i]` is the offset into the 'i'th dimension of `input` that you want to slice from.
方程的signature是这样的:
def slice(input_, begin, size, name=None):
其中“input_”是你输入的tensor,就是被切的那个。
“begin”是每一个维度的起始位置,这个下面详细说。
“size”相当于问每个维度拿几个元素出来。
下面看例1:
t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 6, 6]]])
tf.slice(t, [1, 0, 0], [1, 1, 3])
这个输出是:
[[[3, 3, 3]]]
首先作为一个3维数组t,你要先明白他的shape是[3,2,3].
这个shape是怎么来的呢?咱们把这个t分解一下看就好理解了。那一大堆有括号的t,只看它最外面的括号的话,可以看成是:
t = [A, B, C] #这是第一维度
然后每一个里面有两个东西,可以写成:
A = [i, j], B = [k, l], C = [m, n] #这是第二维度
最后,这i, j, k, l, m, n里面分别是:
i = [1, 1, 1], j = [2, 2, 2], k = [3, 3 ,3], l = [4, 4, 4], m = [5, 5, 5], n = [6, 6, 6] # 这是第三维度
所以shape就是中括号 [ ] 的层级里单位的数量。
对于t来说,最外面括号里有3个东西,分别是A, B, C。这三个东西每个里面有两个玩意儿, i和j, k和l, m和n。
他们里面每一个又有3个数字。所以t的shape是[3,2,3]。这是我的理解方式。
在解释slice之前,有一点要知道的是python的数组index是从0开始的。
有了这个基础,我们再来看例子:
tf.slice(t, [1, 0, 0], [1, 1, 3]) # begin = [1, 0, 0]
这里根据顺序我们知道,begin是[1, 0, 0], size是[1, 1, 3]. 他们两个数组的意义是从左至右,每一个数字代表一个维度。上面说了begin的意思是起始位置,那么[1, 0, 0]的意思是在3个维度中,每个维度从哪里算起。
第一维度是[A, B, C]。 begin里[1, 0, 0]是1,也就是从B算起。其次第二维度里B = [k, l](注意啊,我这里只写了B = [k, l],可不代表只有B有用,如果size里第一个数字是2的话,B和C都会被取的),begin里第二个数是0,也就是从k算起。第三维度k = [3, 3 ,3],begin里第三个数是0,就是从第一个3算起。
到现在都能看懂吧?知道了这三个起始点之后,再来看size。
size的意思是每个维度的大小,也就是每个维度取几个元素。size的应该是最后输出的tensor的shape。
例子里面:
tf.slice(t, [1, 0, 0], [1, 1, 3]) # size = [1, 1, 3]
size里第一个是1,意思是在第一个维度取1个元素。t = [A, B, C] begin是起算是B,取一个那就是B了呗。那么第一维度结果就是[B]
size第二个也是1,第二维度B = [k, l], begin里起算是k,取一个是k。那么第二维度结果是[[k]]。
size第三个是3,第三维度k = [3, 3 ,3],begin里起算是第一个3。三个3取3个数,那就要把三个3都取了,所以是
[[[3, 3, 3]]]
看懂了吗?是不是有点像代数?[B]里把B换成[k], 再把k换成[3, 3 ,3]。最后注意中括号的数量,和size一样是[1, 1, 3].
例2:
t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 6, 6]]])
tf.slice(t, [1, 0, 0], [1, 2, 3])
看懂了第一个,再看第二个就简单了。这里begin还是一样[1, 0 ,0]。 size第一个维度取一个,还是[B]。然后这里不是1了,是2,意思是取两个。还记得B = [k, l]吗?现在不是只要k了,是k和l都要。第三维度取3个,也就是说不光是k = [3, 3 ,3],l = [4, 4, 4]也要slice走。
总结一下,第一维度取[B]。第二维度里把B换成[k, l],就变成了[[k, l]]. 第三维度里把k换成[3, 3 ,3],把l 换成 [4, 4, 4],替换后是最终结果
[[[3, 3, 3], [4, 4, 4]]]
是不是觉得看懂了也挺简单的,只是可能不太习惯这种思维方式。
例3:
t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 6, 6]]])
tf.slice(t, [1, 0, 0], [-1, -1, -1])
对于这种情况,源代码注释中有一句话:
If `size[i]` is -1, all remaining elements in dimension i are included in the slice. In other words, this is equivalent to setting: `size[i] = input.dim_size(i) - begin[i]`
也就是说,如果size输入值是-1的话,在那个维度剩下的数都会slice走。上面的例子中,begin是[1, 0, 0]。三个维度都是-1的话,那么结果: 第一维度是[B,C];第二维度是[[k, l], [m, n]]; 第三维度是[[[3,3,3], [4,4,4]], [[5,5,5], [6,6,6]]]
作者:木木爱吃糖醋鱼
链接:https://www.jianshu.com/p/71e6ef6c121b
来源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。