Ceres-Solver学习笔记(4)

我学习Ceres的目的主要也是做BA,所以有些例程就不多分析了,简单的介绍一下:

  1. circle_fit.cc 显示了怎么去拟合一个圆
  2. ellipse_approximation.cc 我也没太搞明白,这个例程的目的是展示如何使用Solver::Options::dynamic_sparsity,这有利于解决数值稠密,动态稀疏的问题。
  3. denoising.cc 实现了图像去噪声,使用Fields of Experts 模型。
  4. nist.cc 实现解决 NIST 非线性回归问题。
  5. libmv_bundle_adjuster.cc 是 Blender/libmv 使用的BA。
  6. robot_pose_mle.cc这个例子展示了如何利用DynamicAutoDiffCostFunction 。DynamicAutoDiffCostFunction 意味着参数的维度在编译时未知的情况。

这里我们再学习一下3D图优化的例子slam/pose_graph_3d/pose_graph_3d.cc ,毕竟咱们就是做SLAM的,还有几个例子这里就不提了。

// file type.h
#include 
#include 
#include 
#include 

#include "Eigen/Core"
#include "Eigen/Geometry"

namespace ceres {
namespace examples {

struct Pose3d {
  Eigen::Vector3d p;
  Eigen::Quaterniond q;

  // G2O中的数据类型
  static std::string name() {
    return "VERTEX_SE3:QUAT";
  }
  // 熟悉Eigen的都知道这是数据对齐的 
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
};

std::istream& operator>>(std::istream& input, Pose3d& pose) {
  input >> pose.p.x() >> pose.p.y() >> pose.p.z() >> pose.q.x() >>
      pose.q.y() >> pose.q.z() >> pose.q.w();
  // Normalize the quaternion to account for precision loss due to
  // serialization.
  pose.q.normalize();
  return input;
}
// 重命名 map 为 MapOfPoses
typedef std::map<int, Pose3d, std::less<int>,
                 Eigen::aligned_allocator<std::pair<const int, Pose3d> > >
    MapOfPoses;

// 在姿态图中两个顶点之间的约束。约束是从顶点id_begin到顶点id_end的转换
struct Constraint3d {
  int id_begin;
  int id_end;

  // 结束帧 E 到开始帧 B 之间的转换. 他把E坐标系下的向量转换到B坐标系。
  Pose3d t_be;

  // 测量的协方差矩阵的逆。 项的顺序是x, y, z, delta orientation.
  Eigen::Matrix<double, 6, 6> information;

  static std::string name() {
    return "EDGE_SE3:QUAT";
  }

  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
};

std::istream& operator>>(std::istream& input, Constraint3d& constraint) {
  Pose3d& t_be = constraint.t_be;
  input >> constraint.id_begin >> constraint.id_end >> t_be;

  for (int i = 0; i < 6 && input.good(); ++i) {
    for (int j = i; j < 6 && input.good(); ++j) {
      input >> constraint.information(i, j);
      if (i != j) {
        constraint.information(j, i) = constraint.information(i, j);
      }
    }
  }
  return input;
}

typedef std::vector >
    VectorOfConstraints;

}  // namespace examples
} 

#include "Eigen/Core"
#include "ceres/autodiff_cost_function.h"

#include "types.h"

namespace ceres {
namespace examples {

// 计算两个有相对姿态测量的位姿之间的误差项
// hat 变量是测量值,我们有两个姿态x_a,x_b,通过传感器我们可以测量帧A,B之间的变换,表示成t_ab_hat. 我们可以计算当前估计的姿态和测量之间的误差。
//
// 我们把刚体变换表示成一个四元数q和位置p,四元数表示成[x, y, z, w].

// The estimated measurement is:
//      t_ab = [ p_ab ]  = [ R(q_a)^T * (p_b - p_a) ]
//             [ q_ab ]    [ q_a^{-1] * q_b         ]
//
// ^{-1} 表示逆运算,R(q) i表示四元数到旋转矩阵
// For the orientation error, we will use the
// standard multiplicative error resulting in:
//
//   error = [ p_ab - \hat{p}_ab                 ]
//           [ 2.0 * Vec(q_ab * \hat{q}_ab^{-1}) ]
//
// Vec(*) 返回四元数的向量(虚部) 部分.
// 因为测量有一个不确定性与他的精度有关, 我们把误差 乘以 信息矩阵的平方根
//
//   residuals = I^{1/2) * error
// I表示信息矩阵 是 协方差的 逆.
class PoseGraph3dErrorTerm {
 public:
  PoseGraph3dErrorTerm(const Pose3d& t_ab_measured,
                       const Eigen::Matrix<double, 6, 6>& sqrt_information)
      : t_ab_measured_(t_ab_measured), sqrt_information_(sqrt_information) {}

  template <typename T>
  bool operator()(const T* const p_a_ptr, const T* const q_a_ptr,
                  const T* const p_b_ptr, const T* const q_b_ptr,
                  T* residuals_ptr) const {
    // 由p_a_ptr构造 3行1列的矩阵 p_a
    Eigen::Map<const Eigen::Matrix3, 1> > p_a(p_a_ptr);
    // 由q_a_ptr构造 四元数 q_a
    Eigen::Map<const Eigen::Quaternion > q_a(q_a_ptr);

    Eigen::Map<const Eigen::Matrix3, 1> > p_b(p_b_ptr);
    Eigen::Map<const Eigen::Quaternion > q_b(q_b_ptr);

    // Compute the relative transformation between the two frames.
    // q_a的逆 等于 q_a的 共軛
    Eigen::Quaternion q_a_inverse = q_a.conjugate();
    // q_ab = q_a^{-1] * q_b
    Eigen::Quaternion q_ab_estimated = q_a_inverse * q_b;

    // p_ab = R(q_a)^T * (p_b - p_a) 旋转矩阵的转置是对的,与q_a_inverse相同
    Eigen::Matrix3, 1> p_ab_estimated = q_a_inverse * (p_b - p_a);

    // 计算误差 q_ab_measured × q_ab_estimated^{-1]
    Eigen::Quaternion delta_q =
        t_ab_measured_.q.template cast() * q_ab_estimated.conjugate();

    // 计算误差
    // [ position         ]   [ delta_p          ]
    // [ orientation (3x1)] = [ 2 * delta_q(0:2) ]
    Eigen::Map6, 1> > residuals(residuals_ptr);
    residuals.template block<3, 1>(0, 0) =
        p_ab_estimated - t_ab_measured_.p.template cast();
    residuals.template block<3, 1>(3, 0) = T(2.0) * delta_q.vec();

    // 乘以信息矩阵的平方根
    residuals.applyOnTheLeft(sqrt_information_.template cast());

    return true;
  }

  static ceres::CostFunction* Create(
      const Pose3d& t_ab_measured,
      const Eigen::Matrix<double, 6, 6>& sqrt_information) {
      //构造 CostFunction
    return new ceres::AutoDiffCostFunction6, 3, 4, 3, 4>(
        new PoseGraph3dErrorTerm(t_ab_measured, sqrt_information));
  }

  EIGEN_MAKE_ALIGNED_OPERATOR_NEW

 private:
  // The measurement for the position of B relative to A in the A frame.
  const Pose3d t_ab_measured_;
  // The square root of the measurement information matrix.
  const Eigen::Matrix<double, 6, 6> sqrt_information_;
};

}  // namespace examples
}  // namespace ceres
// file pose_graph_3d.cc
#include <iostream>
#include <fstream>
#include <string>

#include "ceres/ceres.h"
#include "common/read_g2o.h"
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "pose_graph_3d_error_term.h"
#include "types.h"

DEFINE_string(input, "", "The pose graph definition filename in g2o format.");

namespace ceres {
namespace examples {

void BuildOptimizationProblem(const VectorOfConstraints& constraints,
                              MapOfPoses* poses, ceres::Problem* problem) {
  CHECK(poses != NULL);
  CHECK(problem != NULL);
  if (constraints.empty()) {
    LOG(INFO) << "No constraints, no problem to optimize.";
    return;
  }

  ceres::LossFunction* loss_function = NULL;
  ceres::LocalParameterization* quaternion_local_parameterization =
      new EigenQuaternionParameterization;
  // 遍历 所有约束条件
  for (VectorOfConstraints::const_iterator constraints_iter =
           constraints.begin();
       constraints_iter != constraints.end(); ++constraints_iter) {
    const Constraint3d& constraint = *constraints_iter;
    // 找到起始帧
    MapOfPoses::iterator pose_begin_iter = poses->find(constraint.id_begin);
    CHECK(pose_begin_iter != poses->end())
        << "Pose with ID: " << constraint.id_begin << " not found.";
    // 找到结束帧
    MapOfPoses::iterator pose_end_iter = poses->find(constraint.id_end);
    CHECK(pose_end_iter != poses->end())
        << "Pose with ID: " << constraint.id_end << " not found.";
    // 平方根计算 Cholesky分解
    const Eigen::Matrix<double, 6, 6> sqrt_information =
        constraint.information.llt().matrixL();
    // 创建 CostFunction.
    ceres::CostFunction* cost_function =
        PoseGraph3dErrorTerm::Create(constraint.t_be, sqrt_information);

    // CostFunction需要用到的数据
    // 迭代器的second 就是 Pose3d
    problem->AddResidualBlock(cost_function, loss_function,
                              pose_begin_iter->second.p.data(),
                              pose_begin_iter->second.q.coeffs().data(),
                              pose_end_iter->second.p.data(),
                              pose_end_iter->second.q.coeffs().data());
    // 这个不太懂,好像与设置求Jacobin有关
    problem->SetParameterization(pose_begin_iter->second.q.coeffs().data(),
                                 quaternion_local_parameterization);
    problem->SetParameterization(pose_end_iter->second.q.coeffs().data(),
                                 quaternion_local_parameterization);
  }

  // 姿态图优化有6个自由度,但不是完全约束的,通常叫做gauge freedom
  // 你可以对所有的节点应用一个严格的转动,优化还是保持相同的cost
  // Levenberg-Marquardt 算法能更好的解决这种情况,但是最好还是固定这个 gauge freedom,
  // 可以通过把一个姿态设为常量,优化不去改变他
  MapOfPoses::iterator pose_start_iter = poses->begin();
  CHECK(pose_start_iter != poses->end()) << "There are no poses.";
  // 将初始姿态设置为常量
  problem->SetParameterBlockConstant(pose_start_iter->second.p.data());
  problem->SetParameterBlockConstant(pose_start_iter->second.q.coeffs().data());
}

// Returns true if the solve was successful.
bool SolveOptimizationProblem(ceres::Problem* problem) {
  CHECK(problem != NULL);

  ceres::Solver::Options options;
  options.max_num_iterations = 200;
  options.linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY;

  ceres::Solver::Summary summary;
  ceres::Solve(options, problem, &summary);

  std::cout << summary.FullReport() << '\n';

  return summary.IsSolutionUsable();
}

// Output the poses to the file with format: id x y z q_x q_y q_z q_w.
bool OutputPoses(const std::string& filename, const MapOfPoses& poses) {
  std::fstream outfile;
  outfile.open(filename.c_str(), std::istream::out);
  if (!outfile) {
    LOG(ERROR) << "Error opening the file: " << filename;
    return false;
  }
  for (std::map<int, Pose3d, std::less<int>,
                Eigen::aligned_allocator<std::pair<const int, Pose3d> > >::
           const_iterator poses_iter = poses.begin();
       poses_iter != poses.end(); ++poses_iter) {
    const std::map<int, Pose3d, std::less<int>,
                   Eigen::aligned_allocator<std::pair<const int, Pose3d> > >::
        value_type& pair = *poses_iter;
    outfile << pair.first << " " << pair.second.p.transpose() << " "
            << pair.second.q.x() << " " << pair.second.q.y() << " "
            << pair.second.q.z() << " " << pair.second.q.w() << '\n';
  }
  return true;
}

}  // namespace examples
}  // namespace ceres

int main(int argc, char** argv) {
  google::InitGoogleLogging(argv[0]);
  CERES_GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true);

  CHECK(FLAGS_input != "") << "Need to specify the filename to read.";

  ceres::examples::MapOfPoses poses;
  ceres::examples::VectorOfConstraints constraints;

  CHECK(ceres::examples::ReadG2oFile(FLAGS_input, &poses, &constraints))
      << "Error reading the file: " << FLAGS_input;

  std::cout << "Number of poses: " << poses.size() << '\n';
  std::cout << "Number of constraints: " << constraints.size() << '\n';

  CHECK(ceres::examples::OutputPoses("poses_original.txt", poses))
      << "Error outputting to poses_original.txt";

  ceres::Problem problem;
  ceres::examples::BuildOptimizationProblem(constraints, &poses, &problem);

  CHECK(ceres::examples::SolveOptimizationProblem(&problem))
      << "The solve was not successful, exiting.";

  CHECK(ceres::examples::OutputPoses("poses_optimized.txt", poses))
      << "Error outputting to poses_original.txt";

  return 0;
}

并不清楚SetParameterization()函数怎么用,感觉Ceres在用法上面不如G2O好用,可能更灵活一点吧,看了两天,还是有很多坑啊

你可能感兴趣的:(c++)