最长回文 HDU - 3068 马拉车算法

问题:

给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度. 
回文就是正反读都是一样的字符串,如aba, abba等

Input

输入有多组case,不超过120组,每组输入为一行小写英文字符a,b,c...y,z组成的字符串S 
两组case之间由空行隔开(该空行不用处理) 
字符串长度len <= 110000

Output

每一行一个整数x,对应一组case,表示该组case的字符串中所包含的最长回文长度. 

Sample Input

aaaa

abab

Sample Output

4
3

题意:略;

思路:

首先用一个非常巧妙的方式,将所有可能的奇数/偶数长度的回文子串都转换成了奇数长度:在每个字符的两边都插入一个特殊的符号。比如 abba 变成 #a#b#b#a#, aba变成 #a#b#a#。 为了进一步减少编码的复杂度,可以在字符串的开始加入另一个特殊字符,这样就不用特殊处理越界问题,比如$#a#b#a#(注意,下面的代码是用C语言写就,由于C语言规范还要求字符串末尾有一个'\0'所以正好OK,但其他语言可能会导致越界)。

下面以字符串12212321为例,经过上一步,变成了 S[] = "$#1#2#2#1#2#3#2#1#";

然后用一个数组 P[i] 来记录以字符S[i]为中心的最长回文子串向左/右扩张的长度(包括S[i],也就是把该回文串“对折”以后的长度),比如S和P的对应关系:

S  #  1  #  2  #  2  #  1  #  2  #  3  #  2  #  1  #
P  1  2  1  2  5  2  1  4  1  2  1  6  1  2  1  2  1
(p.s. 可以看出,P[i]-1正好是原字符串中回文串的总长度)


那么怎么计算P[i]呢?该算法增加两个辅助变量(其实一个就够了,两个更清晰)id和mx,其中 id 为已知的 {右边界最大} 的回文子串的中心,mx则为id+P[id],也就是这个子串的右边界。


然后可以得到一个非常神奇的结论,这个算法的关键点就在这里了:如果mx > i,那么P[i] >= MIN(P[2 * id - i], mx - i)。就是这个串卡了我非常久。实际上如果把它写得复杂一点,理解起来会简单很多:

//记j=2*id-i也就是说 j 是 i 关于 id 的对称点(j=id-(i-id))
if(mx-i>P[j]) 
     P[i]=P[j];
else//P[j]>=mx-i
     P[i]=mx-i;//P[i]>=mx-i取最小值,之后再匹配更新。


当然光看代码还是不够清晰,还是借助图来理解比较容易。

当 mx - i > P[j] 的时候,以S[j]为中心的回文子串包含在以S[id]为中心的回文子串中,由于 i 和 j 对称,以S[i]为中心的回文子串必然包含在以S[id]为中心的回文子串中,所以必有 P[i] = P[j],见下图。
最长回文 HDU - 3068 马拉车算法_第1张图片

当 P[j] >= mx - i 的时候,以S[j]为中心的回文子串不一定完全包含于以S[id]为中心的回文子串中,但是基于对称性可知,下图中两个绿框所包围的部分是相同的,也就是说以S[i]为中心的回文子串,其向右至少会扩张到mx的位置,也就是说 P[i] >= mx - i。至于mx之后的部分是否对称,就只能老老实实去匹配了。
最长回文 HDU - 3068 马拉车算法_第2张图片

对于 mx <= i 的情况,无法对 P[i]做更多的假设,只能P[i] = 1,然后再去匹配了。

代码:

#include
#include
#include
#define N 120000
using namespace std;
char s[N],s1[2*N];
int mp[2*N],mx,id,ans;
int main()
{
    while(~scanf("%s",s))
    {
        int l=0;
        int d=strlen(s);
        s1[l++]=0;
        s1[l++]='#';
        for(int i=0; ii)
                mp[i]=min(mx-i,mp[2*id-i]);
            else
                mp[i]=1;
            while(s1[i+mp[i]]==s1[i-mp[i]])
                mp[i]++;
            if(mx

 

你可能感兴趣的:(字符串)