原文:A Survey of Model Compression and Acceleration for Deep Neural Networks
参考博客:综述论文:当前深度神经网络模型压缩和加速方法速览,译文由机器之心出品,原文来自arXiv,作者Yu Cheng等
大型神经网络具有大量的层级与结点,特别是对于在线学习、增量学习等实时应用,考虑如何减少它们所需要的内存与计算量极为重要。
高效的深度学习方法可以显著地影响分布式系统、嵌入式设备和用于人工智能的 FPGA 等。典型的例子是 ResNet-50[5],它有 50 层卷积网络、超过 95MB 的储存需求和计算每一张图片所需要的浮点数乘法时间。如果剪枝一些冗余的权重后,其大概能节约 75% 的参数和 50% 的计算时间。
压缩模型的设计涉及多个学科:不限于机器学习、最优化、计算机架构、数据压缩、索引和硬件设计等。
深度神经网络压缩方法,分四个级别:
表1表明
根据减少冗余(信息冗余或参数空间冗余)的方式,这些技术可以进一步分为三类:模型量化和二进制化、参数共享和结构化矩阵(structural matrix)
网络量化通过减少表示每个权重所需的比特数来压缩原始网络。Gong等人[6]和 Wu等人[7]对参数值使用 K 均值标量量化。Vanhoucke等人[8]展示了 8 比特参数量化可以在准确率损失极小的同时实现大幅加速。[9]中的研究在基于随机修约(stochastic rounding)的 CNN 训练中使用 16 比特定点表示法(fixed-point representation),显著降低内存和浮点运算,同时分类准确率几乎没有受到损失。[10] 提出的方法是首先修剪不重要的连接,重新训练稀疏连接的网络。然后使用权重共享量化连接的权重,再对量化后的权重和码本(codebook)使用霍夫曼编码,以进一步降低压缩率。如图1所示,该方法首先通过正常的网络训练来学习连接,然后再修剪权重较小的连接,最后重新训练网络来学习剩余稀疏连接的最终权重。
图1.[10]中提到的三阶段压缩方法:修剪、量化(quantization)和霍夫曼编码。修剪减少了需要编码的权重数量,量化和霍夫曼编码减少了用于对每个权重编码的比特数。稀疏表示的元数据包含压缩率。压缩机制不会带来任何准确率损失。
缺陷:(1)此类二元网络的准确率在处理大型 CNN 网络如 GoogleNet 时会大大降低;(2)现有的二进制化方法都基于简单的矩阵近似,忽视了二进制化对准确率损失的影响。
网络剪枝和共享已经被用于降低网络复杂度和解决过拟合问题。有一种早期应用的剪枝方法称为偏差权重衰减(Biased Weight Decay),其中最优脑损伤(Optimal Brain Damage)和最优脑手术(Optimal Brain Surgeon)方法基于损失函数的 Hessian 矩阵减少连接的数量,他们的研究表明这种剪枝方法的精确度比基于重要性的剪枝方法(比如 weight dDecay 方法)更高。
缺陷:剪枝和共享方法存在一些潜在的问题。首先,若使用了 L1 或 L2 正则化,则剪枝方法需要更多的迭代次数才能收敛,此外,所有的剪枝方法都需要手动设置层的敏感度,即需要精调超参数,在某些应用中会显得很冗长繁重。
如果一个 m x n 阶矩阵只需要少于 m×n 个参数来描述,就是一个结构化矩阵(structured matrix)。通常这样的结构不仅能减少内存消耗,还能通过快速的矩阵-向量乘法和梯度计算显著加快推理和训练的速度。
低秩分解和稀疏性
一个典型的 CNN 卷积核是一个 4D 张量,需要注意的是这些张量中可能存在大量的冗余。而基于张量分解的思想也许是减少冗余的很有潜力的方法。而全连接层也可以当成一个 2D 矩阵,低秩分解同样可行。
所有近似过程都是一层接着一层做的,在一个层经过低秩滤波器近似之后,该层的参数就被固定了,而之前的层已经用一种重构误差标准(reconstruction error criterion)微调过。图2是压缩 2D 卷积层的典型低秩方法。
缺陷:低秩方法很适合模型压缩和加速,该方法补充了深度学习的近期发展,如 dropout、修正单元(rectified unit)和 maxout。但是(1)低秩方法的实现并不容易,因为它涉及计算成本高昂的分解操作;(2)目前的方法是逐层执行低秩近似,无法执行非常重要的全局参数压缩,因为不同的层具备不同的信息;(3)分解需要大量的重新训练来达到收敛。
图2.CNN 模型压缩的低秩近似(Low-rank approximation)。左:原始卷积层。右:使用秩 K 进行低秩约束的卷积层
表2.低秩模型及其基线模型在 ILSVRC-2012 数据集上的性能对比。
使 x 作为输入,Φ(·) 作为网络或层,T (·) 作为变换矩阵。则等变概念可以定义为:
即,使用变换矩阵 T (·) 转换输入 x,然后将其传送至网络或层Φ(·),其结果和先将 x 映射到网络再变换映射后的表征结果一致。该理论说明将变换矩阵应用到层或滤波器Φ(·) 来对整个网络模型进行压缩是合理的。得到表3结果:
表 3. 基于迁移卷积滤波器的不同方法在 CIFAR-10 和 CIFAR-100 数据集上的性能对比。
缺陷:将迁移信息应用到卷积滤波器的方法需要解决几个问题。首先,这些方法的性能可与宽/平坦的架构(如 VGGNet)相媲美,但是无法与较窄/特殊的架构(如 GoogleNet、Res-Net)相比。其次,迁移假设有时过于强大以致于无法指导算法,使得在某些数据集上的结果不稳定。
据我们所知,Caruana 等人 [49] 首先提出利用知识迁移(KT)来压缩模型。他们通过集成强分类器标注的伪数据训练了一个压缩模型,并再现了原大型网络的输出结果。然而他们的工作仅限于浅层网络。这个想法近来在 [50] 中扩展为知识精炼(Knowledge Distillation/KD),它可以将深度和宽度的网络压缩为浅层模型,该压缩模型模仿了复杂模型所能实现的功能。KD 的基本思想是通过软 softmax 学习教师模型输出的类别分布而降大型教师模型(teacher model)的知识精炼为较小的模型。
[51] 中的工作引入了 KD 压缩框架,即通过遵循学生-教师的范式减少深度网络的训练量,这种学生-教师的范式即通过软化教师的输出而惩罚学生。该框架将深层网络(教师)的集成压缩为相同深度的学生网络。为了完成这一点,要训练学生模型以预测教师模型的输出,即真实的分类标签。尽管 KD 方法十分简单,但它同样在各种图像分类任务中表现出期望的结果。
缺陷:基于 KD 的方法能令更深的模型变得更加浅而显著地降低计算成本。但是也有一些缺点,例如 KD 方法只能用于具有 Softmax 损失函数分类任务,这阻碍了其应用。另一个缺点是模型的假设有时过于严格,以至于其性能有时比不上其它方法。
表4. 模型压缩不同的代表性研究中使用的基线模型。
存在的挑战: