Problem Description
Ladies and gentlemen, please sit up straight.
Don’t tilt your head. I’m serious.
For n given strings S1,S2,⋯,Sn, labelled from 1 to n, you should find the largest i (1≤i≤n) such that there exists an integer j (1≤j
A substring of a string Si is another string that occurs in Si. For example, ruiz" is a substring of
ruizhang", and rzhang" is not a substring of
ruizhang".
Input
The first line contains an integer t (1≤t≤50) which is the number of test cases.
For each test case, the first line is the positive integer n (1≤n≤500) and in the following n lines list are the strings S1,S2,⋯,Sn.
All strings are given in lower-case letters and strings are no longer than 2000 letters.
Output
For each test case, output the largest label you get. If it does not exist, output −1.
Sample Input
4
5
ab
abc
zabc
abcd
zabcd
4
you
lovinyou
aboutlovinyou
allaboutlovinyou
5
de
def
abcd
abcde
abcdef
3
a
ba
ccc
Sample Output
Case #1: 4
Case #2: -1
Case #3: 4
Case #4: 3
题解:
这个题的做法就是KMP算法加一点优化,当一个字符串a是字符串b的连续字串时,那么我们就可以不用再管小的这个字符串a,因为如果大的字符串b属于某个字符串,那么字符串a肯定也属于这个字符串,如果小的字符串a不属于某个字符串,那么字符串b肯定也不属于这个字符串,所以我们只需要判定字符串b即可。这样,用一个二重循环,第一重i从第2个字符串到n,第二重j从1开始到i-1。用KMP算法判断字符串j是不是字符串a的字串。
#include
#include
#include
using namespace std;
int vis[505],ne[2005],flag;
char str[505][2005];
void next(char *s)
{
int i,k,len;
len = strlen(s);
ne[0] = -1;
k = -1;
for(i = 1; i < len; i++)
{
while(k > -1 && s[k+1] != s[i])
{
k = ne[k];
}
if(s[k+1] == s[i])
{
k++;
}
ne[i] = k;
}
}
int kmp(char *s1,char *s2)
{
int i,k,len1,len2;
len1 = strlen(s1);
len2 = strlen(s2);
k = -1;
next(s2);
for(i = 0; i < len1; i++)
{
while(k > -1 && s2[k+1] != s1[i])
{
k = ne[k];
}
if(s2[k+1] == s1[i])
{
k++;
}
if(k == len2-1)
{
return 1;
}
}
return 0;
}
int main()
{
int i,j,k,t,n,ans;
scanf("%d",&t);
for(k = 1; k <= t; k++)
{
scanf("%d",&n);
for(i = 0; i < n; i++)
{
scanf("%s",str[i]);
}
memset(vis,1,sizeof(vis));
ans = -2;
for(i = 1; i < n; i++)
{
for(j = 0; j < i; j++)
{
if(vis[j] != 0)
{
if(kmp(str[i],str[j]) == 1)
{
vis[j] = 0;
}
else
{
ans = i;
break;
}
}
}
}
printf("Case #%d: %d\n",k,ans+1);
}
return 0;
}