- Python机器学习之XGBoost从入门到实战(基本理论说明)
雪域枫蓝
PythonAtificialIntelligence机器学习python分布式
Xgboost从基础到实战XGBoost:eXtremeGradientBoosting*应用机器学习领域的一个强有力的工具*GradientBootingMachines(GBM)的优化表现,快速有效—深盟分布式机器学习开源平台(DistributedmachinelearningCommunity,DMLC)的分支—DMLC也开源流行的深度学习库mxnet*GBM:Machine:机器学习模型
- nlp培训重点-3
heine162
自然语言处理人工智能
1.文本匹配分类:loader:#-*-coding:utf-8-*-importjsonimportreimportosimporttorchimportrandomimportloggingfromtorch.utils.dataimportDataset,DataLoaderfromcollectionsimportdefaultdictfromtransformersimportBertT
- 【架构】前台、中台、后台
m0_74823388
架构
文章目录前台、中台、后台1.前台(Frontend)特点:技术栈:2.中台(Middleware)特点:技术栈:3.后台(Backend)特点:技术栈:示例场景前台:中台:后台:小前台大中台一、定义与概述二、小前台大中台架构的优势三、小前台大中台架构的应用案例前台、中台、后台在企业架构和软件开发中,“前台”、“中台”和“后台”分别指代不同层次的系统或组件。这三个概念通常用来描述企业内部信息系统架构
- 第79期 | GPTSecurity周报
云起无垠
GPTSecurityAIGCgpt
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.TrojanWhi
- 第60期 | GPTSecurity周报
云起无垠
GPTSecurity人工智能语言模型网络安全
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.映射你的模型:评估
- YOLOv10-1.1部分代码阅读笔记-base.py
红色的山茶花
YOLO笔记深度学习
base.pyultralytics\data\base.py目录base.py1.所需的库和模块2.classBaseDataset(Dataset):1.所需的库和模块#UltralyticsYOLO,AGPL-3.0licenseimportglobimportmathimportosimportrandomfromcopyimportdeepcopyfrommultiprocessing.
- 大语言模型(LLMs)入门教程(非常详细)从零基础入门到精通,看完这一篇就够了
大模型零基础教程
语言模型人工智能自然语言处理大模型
大语言模型(LLMs)作为人工智能(AI)领域的一项突破性发展,已经改变了自然语言处理(NLP)和机器学习(ML)应用的面貌。这些模型,包括OpenAI的GPT-4o和Google的gemini系列等,已经展现出了在理解和生成类人文本方面的令人印象深刻的能力,使它们成为各行各业的宝贵工具。如下这份指南将涵盖LLMs的基础知识、训练过程、用例和未来趋势……一.WhatareLargeLanguage
- BERT详解
comli_cn
大模型笔记bert人工智能深度学习
1.背景结构1.1基础知识BERT(BidirectionalEncoderRepresentationsfromTransformers)是谷歌提出,作为一个Word2Vec的替代者,其在NLP领域的11个方向大幅刷新了精度,可以说是前几年来自残差网络最优突破性的一项技术了。论文的主要特点以下几点:使用了双向Transformer作为算法的主要框架,之前的模型是从左向右输入一个文本序列,或者将l
- 1.4走向不同:GPT 与 BERT 的选择——两大NLP模型的深度解析
少林码僧
AI大模型应用实战专栏自然语言处理gptbert
走向不同:GPT与BERT的选择——两大NLP模型的深度解析在自然语言处理(NLP)领域,GPT(GenerativePretrainedTransformer)和BERT(BidirectionalEncoderRepresentationsfromTransformers)无疑是最具代表性和影响力的两个模型。它们都基于Transformer架构,但在设计理念、任务应用和训练方式等方面存在显著差
- 第83期 | GPTSecurity周报
云起无垠
GPTSecurity人工智能网络安全
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.混乱中建立秩序:人
- unity游戏引擎架构设计分析
你一身傲骨怎能输
游戏引擎游戏引擎unity
Unity游戏引擎的架构设计是一个高度复杂且模块化的系统,它允许开发者创建跨多个平台的游戏和应用程序。以下是对Unity游戏引擎架构设计的分析:1.总体架构Unity引擎的总体架构可以分为几个主要层次:核心层(CoreLayer):这是引擎的基础,包含基本的数据类型、内存管理、线程和同步机制等。平台抽象层(PlatformAbstractionLayer):这一层负责处理不同平台的差异,确保游戏可
- AUTOSAR汽车电子嵌入式编程精讲300篇-智能网联汽车CAN总线-基于电压信号的CAN总线入侵检测系统设计与实现
格图素书
汽车网络
目录前言入侵检测系统研究现状入侵检测系统建模CAN总线入侵检测威胁模型DeepSVDD模型入侵检测系统方案设计挑战和解决方案差分信号的采集与处理差分信号的特征提取入侵检测模型的设计入侵检测系统性能评估实验环境设置不同的车辆状态不同数量的攻击目标不同发送频率的攻击消息DeepSVDD模型与SVDD模型的比较本文篇幅较长,分为多篇,文章索引详见智能网联汽车CAN总线-发展现状智能网联汽车CAN总线-智
- 自学记录鸿蒙API 13:PreviewKit从文件预览到应用开发
harmonyos-next
学习了一些API13之后,我决定研究一下PreviewKit(文件预览服务)。这个模块可以快速预览多种文件类型,包括文本、图片、视频、音频和PDF等,为文件管理类应用提供了系统级支持。这次学习不仅是技术上的积累,更是个人能力的全面提升。我会从实际开发的角度,带大家了解PreviewKit的功能和实现,并分享如何利用它开发出一款实用的文件预览助手应用。通过我的实践经验,希望能为其他开发者提供灵感与帮
- Windows 11安装DeepSpeed报错(Unable to pre-compile async_io)问题解决
happy coding
windowsgpt
Windows11安装DeepSpeed报错(Unabletopre-compileasync_io)问题解决报错如下Preparingmetadata(setup.py)...errorerror:subprocess-exited-with-error×pythonsetup.pyegg_infodidnotrunsuccessfully.│exitcode:1╰─>[17linesofout
- 3、C#基于.net framework的应用开发实战编程 - 实现(三、一) - 编程手把手系列文章...
lzhdim
c#.netoracle开发语言数据库
三、实现;三.一、实现数据库操作;对于数据库的操作,以前都是有ODBC的接口,通过Helper类库进行的操作。此文主要介绍例子里对数据库操作的实现。1、SQLiteHelper;SQLite主要是用C编写的,但是对于C#来说提供了类库,但是还需要Helper类来进行高层次的处理。这个类库来源于网络,具体实现请自己阅读例子中的源码。2、SQL语句;例子的中的SQL语句在设计的时候数据表的操作都罗列了
- 机器学习和深度学习的概念
你好呀我是裤裤
深度学习笔记机器学习深度学习人工智能
MachineLearning机器学习,可以看作是找一个函数。这个函数是人类找不到的,所以交给机器来找。DifferenttypesofFunctions**Regression:**函数的输出是一个数值forexample:**Classification:**给出选项,让机器去选择。forexample:检测一个邮件是不是垃圾文件,就可以通过这个来做。选项是两个:垃圾文件or非垃圾文件。下面,
- PLUTO:突破基于模仿学习的自动驾驶规划极限
硅谷秋水
机器学习自动驾驶人工智能自动驾驶人工智能机器学习计算机视觉
24年4月来自香港科技大学的论文“PLUTO:PushingtheLimitofImitationLearning-basedPlanningforAutonomousDriving”。PLUTO,突破基于模仿学习的自动驾驶规划极限。改进来自三个关键方面:一种纵向横向感知模型架构,可实现灵活多样的驾驶行为;一种创新的辅助损失计算方法,可广泛应用且可高效地进行批量计算;一种利用对比学习的训练框架,采
- 【设计模式】6大设计原则和23种设计模式
藓类少女
设计模式python
设计原则是更高层次的思想指导,强调代码的可维护性、稳定性和灵活性。设计模式是实现设计原则的具体方法和工具,解决特定场景的问题。I、6大设计原则单一职责原则(SRP,SingleResponsibilityPrinciple)每个类应该只有一个引起变化的原因,职责应该保持单一。目标:高内聚,低耦合。开闭原则(OCP,Open/ClosedPrinciple)软件实体(类、模块、函数等)应该对扩展开放
- 【大模型LoRa微调】Qwen2.5 Coder 指令微调【代码已开源】
FF-Studio
大语言模型开源
本文需要用到的代码已经放在GitHub的仓库啦,别忘了给仓库点个小心心~~~https://github.com/LFF8888/FF-Studio-Resources第001个文件哦~一、引言:大语言模型与指令微调1.1大语言模型发展简史随着深度学习的飞速发展,特别是Transformer架构在自然语言处理(NLP)领域的成功,大语言模型(LLM,LargeLanguageModel)成为近年来
- 第78期 | GPTSecurity周报
aigcgpts
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.ChatNVD:借
- Android系统架构
jingling555
Androidandroid系统架构arm开发安卓
Android系统架构:Android系统架构是一个复杂的、分层的结构,旨在提供高度的灵活性和可扩展性。这个架构可以大致分为以下几个主要层次:LinuxKernel(Linux内核):Linux内核是Android系统的底层,提供了系统底层的硬件驱动程序支持,并管理了系统的资源。它包括了各种设备驱动程序(如显示驱动、音频驱动、键盘驱动、电源驱动等)、内存管理、网络管理、电源管理以及系统安全等功能。
- 拿下美赛M奖之必备软件和网站!
东方建模.
数学建模
目录前言:一.题目翻译与理解:DeepL+知云文献翻译二.查找文献:国内外平台结合使用三.论文撰写:Word或LaTeX+Overleaf四.公式输入与思维导图:MathType+XMind五.阅读文献与文献管理:AdobeReader+Zotero六.模型求解与编程:MATLAB+Python+Lingo七.图形绘制与结果可视化:MATLAB+Python+Origin八.流程图与示意图:亿图图
- 信息系统项目管理师笔记
Ling912
信息系统项目管理师信息系统项目管理师
高项考点总结第一章:信息化和信息系统信息的属性:精确性、完整性、可靠性、及时性、经济型、可验证性、安全性。信息的传输技术是信息技术的核心信息化的5个层次:产品信息化,企业信息化,产业信息化,国民经济信息化,社会生活信息化。信息化的主体是全体社会成员两网是政务内网和政务外网,一站是政府门户网站。信息化六要素:信息资源是关键、信息网络是基础设施、信息技术应应用、信息技术产业是物质基础、信息化人才是成功
- 第81期 | GPTSecurity周报
aigc网络安全
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.大语言模型与代码安
- Apache Flink 2.0-preview released
flink大数据
ApacheFlink社区正在积极准备Flink2.0,这是自Flink1.0发布8年以来的首次大版本发布。作为一个重要的里程碑,Flink2.0将引入许多激动人心的功能和改进,以及一些不兼容的破坏性变更。为了促进用户和上下游项目(例如,连接器)尽早适配这些变更,提前尝试这些令人兴奋的新功能同时收集反馈,我们现在提供了Flink2.0的预览版本。注意:Flink2.0预览版不是稳定版本,请不要应用
- HarmonyOS 鸿蒙面试第一弹
霹雳桃
HarmonyOsharmonyos华为1024程序员节
鸿蒙面试第一弹答案持续更新中1、自我介绍2、鸿蒙项目介绍3、你接触鸿蒙多久了4、项目给你,鸿蒙项目给你能独立完成吗?5、装饰器有哪些-@Component:用于定义可重用的UI组件。-@Entry:用于标识页面的入口组件。-@Reusable:实现组件复用,可以优化加载性能并减少应用卡顿。-@Preview:用于预览器预览,与@Entry和@Component配合使用可在预览器上进行视图展示。-@
- 【机器学习】聚类【Ⅰ】基础知识与距离度量
不牌不改
【机器学习】聚类机器学习算法
主要来自周志华《机器学习》一书,数学推导主要来自简书博主“形式运算”的原创博客,包含自己的理解。有任何的书写错误、排版错误、概念错误等,希望大家包含指正。由于字数限制,分成五篇博客。【机器学习】聚类【Ⅰ】基础知识与距离度量【机器学习】聚类【Ⅱ】原型聚类经典算法【机器学习】聚类【Ⅲ】高斯混合模型讲解【机器学习】聚类【Ⅳ】高斯混合模型数学推导【机器学习】聚类【Ⅴ】密度聚类与层次聚类聚类1聚类任务在“无
- 第83期 | GPTSecurity周报
aigcgpts
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.混乱中建立秩序:人
- NLP-语义解析(Text2SQL):技术路线【Seq2Seq、模板槽位填充、中间表达、强化学习、图网络】
u013250861
#自然语言处理人工智能
目前关于NL2SQL技术路线的发展主要包含以下几种:Seq2Seq方法:在深度学习的研究背景下,很多研究人员将Text-to-SQL看作一个类似神经机器翻译的任务,主要采取Seq2Seq的模型框架。基线模型Seq2Seq在加入Attention、Copying等机制后,能够在ATIS、GeoQuery数据集上达到84%的精确匹配,但是在WikiSQL数据集上只能达到23.3%的精确匹配,37.0%
- 注意力池化层:从概念到实现及应用
专业发呆业余科研
深度模型底层原理python人工智能transformer深度学习自然语言处理图像处理
引言在现代深度学习模型中,注意力机制已经成为一个不可或缺的组件,特别是在处理自然语言和视觉数据时。多头注意力机制(MultiheadAttention)是Transformer模型的核心,它通过多个注意力头来捕捉序列中不同部分之间的关系。然而,在多模态模型中,如何有效地将图像特征和文本特征结合起来一直是一个挑战。注意力池化层(AttentionPoolingLayer)提供了一种有效的解决方案,通
- 对于规范和实现,你会混淆吗?
yangshangchuan
HotSpot
昨晚和朋友聊天,喝了点咖啡,由于我经常喝茶,很长时间没喝咖啡了,所以失眠了,于是起床读JVM规范,读完后在朋友圈发了一条信息:
JVM Run-Time Data Areas:The Java Virtual Machine defines various run-time data areas that are used during execution of a program. So
- android 网络
百合不是茶
网络
android的网络编程和java的一样没什么好分析的都是一些死的照着写就可以了,所以记录下来 方便查找 , 服务器使用的是TomCat
服务器代码; servlet的使用需要在xml中注册
package servlet;
import java.io.IOException;
import java.util.Arr
- [读书笔记]读法拉第传
comsci
读书笔记
1831年的时候,一年可以赚到1000英镑的人..应该很少的...
要成为一个科学家,没有足够的资金支持,很多实验都无法完成
但是当钱赚够了以后....就不能够一直在商业和市场中徘徊......
- 随机数的产生
沐刃青蛟
随机数
c++中阐述随机数的方法有两种:
一是产生假随机数(不管操作多少次,所产生的数都不会改变)
这类随机数是使用了默认的种子值产生的,所以每次都是一样的。
//默认种子
for (int i = 0; i < 5; i++)
{
cout<<
- PHP检测函数所在的文件名
IT独行者
PHP函数
很简单的功能,用到PHP中的反射机制,具体使用的是ReflectionFunction类,可以获取指定函数所在PHP脚本中的具体位置。 创建引用脚本。
代码:
[php]
view plain
copy
// Filename: functions.php
<?php&nbs
- 银行各系统功能简介
文强chu
金融
银行各系统功能简介 业务系统 核心业务系统 业务功能包括:总账管理、卡系统管理、客户信息管理、额度控管、存款、贷款、资金业务、国际结算、支付结算、对外接口等 清分清算系统 以清算日期为准,将账务类交易、非账务类交易的手续费、代理费、网络服务费等相关费用,按费用类型计算应收、应付金额,经过清算人员确认后上送核心系统完成结算的过程 国际结算系
- Python学习1(pip django 安装以及第一个project)
小桔子
pythondjangopip
最近开始学习python,要安装个pip的工具。听说这个工具很强大,安装了它,在安装第三方工具的话so easy!然后也下载了,按照别人给的教程开始安装,奶奶的怎么也安装不上!
第一步:官方下载pip-1.5.6.tar.gz, https://pypi.python.org/pypi/pip easy!
第二部:解压这个压缩文件,会看到一个setup.p
- php 数组
aichenglong
PHP排序数组循环多维数组
1 php中的创建数组
$product = array('tires','oil','spark');//array()实际上是语言结构而不 是函数
2 如果需要创建一个升序的排列的数字保存在一个数组中,可以使用range()函数来自动创建数组
$numbers=range(1,10)//1 2 3 4 5 6 7 8 9 10
$numbers=range(1,10,
- 安装python2.7
AILIKES
python
安装python2.7
1、下载可从 http://www.python.org/进行下载#wget https://www.python.org/ftp/python/2.7.10/Python-2.7.10.tgz
2、复制解压
#mkdir -p /opt/usr/python
#cp /opt/soft/Python-2
- java异常的处理探讨
百合不是茶
JAVA异常
//java异常
/*
1,了解java 中的异常处理机制,有三种操作
a,声明异常
b,抛出异常
c,捕获异常
2,学会使用try-catch-finally来处理异常
3,学会如何声明异常和抛出异常
4,学会创建自己的异常
*/
//2,学会使用try-catch-finally来处理异常
- getElementsByName实例
bijian1013
element
实例1:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/x
- 探索JUnit4扩展:Runner
bijian1013
java单元测试JUnit
参加敏捷培训时,教练提到Junit4的Runner和Rule,于是特上网查一下,发现很多都讲的太理论,或者是举的例子实在是太牵强。多搜索了几下,搜索到两篇我觉得写的非常好的文章。
文章地址:http://www.blogjava.net/jiangshachina/archive/20
- [MongoDB学习笔记二]MongoDB副本集
bit1129
mongodb
1. 副本集的特性
1)一台主服务器(Primary),多台从服务器(Secondary)
2)Primary挂了之后,从服务器自动完成从它们之中选举一台服务器作为主服务器,继续工作,这就解决了单点故障,因此,在这种情况下,MongoDB集群能够继续工作
3)挂了的主服务器恢复到集群中只能以Secondary服务器的角色加入进来
2
- 【Spark八十一】Hive in the spark assembly
bit1129
assembly
Spark SQL supports most commonly used features of HiveQL. However, different HiveQL statements are executed in different manners:
1. DDL statements (e.g. CREATE TABLE, DROP TABLE, etc.)
- Nginx问题定位之监控进程异常退出
ronin47
nginx在运行过程中是否稳定,是否有异常退出过?这里总结几项平时会用到的小技巧。
1. 在error.log中查看是否有signal项,如果有,看看signal是多少。
比如,这是一个异常退出的情况:
$grep signal error.log
2012/12/24 16:39:56 [alert] 13661#0: worker process 13666 exited on s
- No grammar constraints (DTD or XML schema).....两种解决方法
byalias
xml
方法一:常用方法 关闭XML验证
工具栏:windows => preferences => xml => xml files => validation => Indicate when no grammar is specified:选择Ignore即可。
方法二:(个人推荐)
添加 内容如下
<?xml version=
- Netty源码学习-DefaultChannelPipeline
bylijinnan
netty
package com.ljn.channel;
/**
* ChannelPipeline采用的是Intercepting Filter 模式
* 但由于用到两个双向链表和内部类,这个模式看起来不是那么明显,需要仔细查看调用过程才发现
*
* 下面对ChannelPipeline作一个模拟,只模拟关键代码:
*/
public class Pipeline {
- MYSQL数据库常用备份及恢复语句
chicony
mysql
备份MySQL数据库的命令,可以加选不同的参数选项来实现不同格式的要求。
mysqldump -h主机 -u用户名 -p密码 数据库名 > 文件
备份MySQL数据库为带删除表的格式,能够让该备份覆盖已有数据库而不需要手动删除原有数据库。
mysqldump -–add-drop-table -uusername -ppassword databasename > ba
- 小白谈谈云计算--基于Google三大论文
CrazyMizzz
Google云计算GFS
之前在没有接触到云计算之前,只是对云计算有一点点模糊的概念,觉得这是一个很高大上的东西,似乎离我们大一的还很远。后来有机会上了一节云计算的普及课程吧,并且在之前的一周里拜读了谷歌三大论文。不敢说理解,至少囫囵吞枣啃下了一大堆看不明白的理论。现在就简单聊聊我对于云计算的了解。
我先说说GFS
&n
- hadoop 平衡空间设置方法
daizj
hadoopbalancer
在hdfs-site.xml中增加设置balance的带宽,默认只有1M:
<property>
<name>dfs.balance.bandwidthPerSec</name>
<value>10485760</value>
<description&g
- Eclipse程序员要掌握的常用快捷键
dcj3sjt126com
编程
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可以那么勤奋,每天都孜孜不倦得
- Android学习之路
dcj3sjt126com
Android学习
转自:http://blog.csdn.net/ryantang03/article/details/6901459
以前有J2EE基础,接触JAVA也有两三年的时间了,上手Android并不困难,思维上稍微转变一下就可以很快适应。以前做的都是WEB项目,现今体验移动终端项目,让我越来越觉得移动互联网应用是未来的主宰。
下面说说我学习Android的感受,我学Android首先是看MARS的视
- java 遍历Map的四种方法
eksliang
javaHashMapjava 遍历Map的四种方法
转载请出自出处:
http://eksliang.iteye.com/blog/2059996
package com.ickes;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
/**
* 遍历Map的四种方式
- 【精典】数据库相关相关
gengzg
数据库
package C3P0;
import java.sql.Connection;
import java.sql.SQLException;
import java.beans.PropertyVetoException;
import com.mchange.v2.c3p0.ComboPooledDataSource;
public class DBPool{
- 自动补全
huyana_town
自动补全
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml&quo
- jquery在线预览PDF文件,打开PDF文件
天梯梦
jquery
最主要的是使用到了一个jquery的插件jquery.media.js,使用这个插件就很容易实现了。
核心代码
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.
- ViewPager刷新单个页面的方法
lovelease
androidviewpagertag刷新
使用ViewPager做滑动切换图片的效果时,如果图片是从网络下载的,那么再子线程中下载完图片时我们会使用handler通知UI线程,然后UI线程就可以调用mViewPager.getAdapter().notifyDataSetChanged()进行页面的刷新,但是viewpager不同于listview,你会发现单纯的调用notifyDataSetChanged()并不能刷新页面
- 利用按位取反(~)从复合枚举值里清除枚举值
草料场
enum
以 C# 中的 System.Drawing.FontStyle 为例。
如果需要同时有多种效果,
如:“粗体”和“下划线”的效果,可以用按位或(|)
FontStyle style = FontStyle.Bold | FontStyle.Underline;
如果需要去除 style 里的某一种效果,
- Linux系统新手学习的11点建议
刘星宇
编程工作linux脚本
随着Linux应用的扩展许多朋友开始接触Linux,根据学习Windwos的经验往往有一些茫然的感觉:不知从何处开始学起。这里介绍学习Linux的一些建议。
一、从基础开始:常常有些朋友在Linux论坛问一些问题,不过,其中大多数的问题都是很基础的。例如:为什么我使用一个命令的时候,系统告诉我找不到该目录,我要如何限制使用者的权限等问题,这些问题其实都不是很难的,只要了解了 Linu
- hibernate dao层应用之HibernateDaoSupport二次封装
wangzhezichuan
DAOHibernate
/**
* <p>方法描述:sql语句查询 返回List<Class> </p>
* <p>方法备注: Class 只能是自定义类 </p>
* @param calzz
* @param sql
* @return
* <p>创建人:王川</p>
* <p>创建时间:Jul