前几天写了一个小的项目关于:当手机处于静止状态时,识别是否动或者前方有不同物体
MainActivity
public class MainActivity extends Activity implements SurfaceHolder.Callback,
PreviewCallback {
// 定义对象
private SurfaceView mSurfaceview = null; // SurfaceView对象:(视图组件)视频显示
private SurfaceHolder mSurfaceHolder = null; // SurfaceHolder对象:(抽象接口)SurfaceView支持类
private Camera mCamera;
private Camera.Parameters parameters = null;
private Bitmap bitmap;// 原图
private Bitmap tempBitmap;// temp bitmap
private Bitmap bitmap_;//处理后的bitmap
private Bitmap bgBitmap;//背景图
private Bitmap bgBitmap_;//处理后的背景图片
private ImageView img;
private SurfaceView view;
private long times = 0l;//连续多久不动时间
private long indexFrame = 0l;
private static final String TAG ="MainActivity";
private long times_ = 0l;//temp time
private int police_time = 25;//持续时间
private int police_time_ = 10;//持续时间
private long times_2 = 0l;//报警确认次数
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.camera_layout);
init();
}
// OpenCV库加载并初始化成功后的回调函数
private BaseLoaderCallback mLoaderCallback = new BaseLoaderCallback(this) {
@Override
public void onManagerConnected(int status) {
// TODO Auto-generated method stub
switch (status) {
case BaseLoaderCallback.SUCCESS:
Log.i(TAG, "成功加载");
break;
default:
super.onManagerConnected(status);
Log.i(TAG, "加载失败");
break;
}
}
};
@Override
protected void onResume() {
// TODO Auto-generated method stub
super.onResume();
// load OpenCV engine and init OpenCV library
OpenCVLoader.initAsync(OpenCVLoader.OPENCV_VERSION_2_4_4,
getApplicationContext(), mLoaderCallback);
Log.i(TAG, "onResume sucess load OpenCV...");
}
// 初始化控件
private void init() {
// SurfaceView
view = (SurfaceView) findViewById(R.id.surface_view);
// 照相机预览的空间
view.getHolder().setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
view.getHolder().setFixedSize(1920, 1080); // 设置Surface分辨率
view.getHolder().setKeepScreenOn(true);// 屏幕常亮
view.getHolder().addCallback(this);// 为SurfaceView的句柄添加一个回调函数
// ImageView
img = (ImageView) findViewById(R.id.img_res);
}
// SurfaceHoder.Callback
// 当SurfaceView/预览界面的格式和大小发生改变时,该方法被调用
@Override
public void surfaceChanged(SurfaceHolder holder, int format, int width,
int height) {
// TODO Auto-generated method stub
parameters = mCamera.getParameters(); // 获取各项参数
mCamera.setParameters(parameters);
parameters.setPictureFormat(PixelFormat.JPEG); // 设置图片格式
parameters.setPreviewSize(width, height); // 设置预览大小
parameters.setPreviewFrameRate(5); // 设置每秒显示4帧
parameters.setPictureSize(width, height); // 设置保存的图片尺寸
parameters.setJpegQuality(80); // 设置照片质量
mCamera.setPreviewCallback(this);
startFocus();
}
// SurfaceView启动时/初次实例化,预览界面被创建时,该方法被调用。
@Override
public void surfaceCreated(SurfaceHolder mSurfaceHolder) {
// TODO Auto-generated method stub
try {
mCamera = Camera.open(1); // 打开摄像头
mCamera.setPreviewDisplay(mSurfaceHolder); // 设置用于显示拍照影像的SurfaceHolder对象
mCamera.setDisplayOrientation(getPreviewDegree(MainActivity.this));
mCamera.startPreview(); // 开始预览
} catch (Exception e) {
e.printStackTrace();
}
}
// 提供一个静态方法,用于根据手机方向获得相机预览画面旋转的角度
public static int getPreviewDegree(Activity activity) {
// 获得手机的方向
int rotation = activity.getWindowManager().getDefaultDisplay()
.getRotation();
int degree = 0;
// 根据手机的方向计算相机预览画面应该选择的角度
switch (rotation) {
case Surface.ROTATION_0:
degree = 90;
break;
case Surface.ROTATION_90:
degree = 0;
break;
case Surface.ROTATION_180:
degree = 270;
break;
case Surface.ROTATION_270:
degree = 180;
break;
}
return degree;
}
// SurfaceView销毁时,该方法被调用
@Override
public void surfaceDestroyed(SurfaceHolder arg0) {
// TODO Auto-generated method stub
if (mCamera != null) {
mCamera.setPreviewCallback(null);
mCamera.release(); // 释放照相机
mCamera = null;
}
}
// PreviewCallback
@Override
public void onPreviewFrame(byte[] data, Camera camera) {
// TODO Auto-generated method stub
if (indexFrame++ % 6 != 0)
return;
Size size = camera.getParameters().getPreviewSize();
try {
YuvImage image = new YuvImage(data, ImageFormat.NV21, size.width,
size.height, null);
if (image != null) {
ByteArrayOutputStream stream = new ByteArrayOutputStream();
image.compressToJpeg(new Rect(0, 0, size.width, size.height),
80, stream);
Bitmap bmp = BitmapFactory.decodeByteArray(
stream.toByteArray(), 0, stream.size());
// **********************
// 因为图片会放生旋转,因此要对图片进行旋转到和手机在一个方向上
bmp = rotaingImageView(-90, bmp);
// 图片太大处理较慢,就把图片缩放裁剪
Matrix matrix = new Matrix();
matrix.postScale(0.125f, 0.125f); // 长和宽缩小的比例
bitmap = bmp.createBitmap(bmp, 0, 0, size.height, size.width,
matrix, true);
bitmap_ = procSrc2Gray(bitmap);//灰度
bitmap_ = changeBitmap(bitmap);//二值
//报警
getPolice();
// **********************************
stream.close();
}
} catch (Exception ex) {
Log.e("Sys", "Error:" + ex.getMessage());
}
}
// 自动对焦
Timer timer = new Timer(true);
TimerTask task = new TimerTask() {
public void run() {
// 每次需要执行的代码放到这里面
// 实现自动对焦
mCamera.autoFocus(null);
}
};
public void startFocus() {
timer.schedule(task, 0, 3000);
}
// 旋转
public Bitmap rotaingImageView(int angle, Bitmap bitmap) {
// 旋转图片 动作
Matrix matrix = new Matrix();
matrix.postRotate(angle);
// 创建新的图片
Bitmap bm = Bitmap.createBitmap(bitmap, 0, 0, bitmap.getWidth(),
bitmap.getHeight(), matrix, true);
return bm;
}
// 比较图片
public boolean isEquals(Bitmap b1, Bitmap b2) {
int xCount = b1.getWidth();
int yCount = b1.getHeight();
int number = 0;
for (int x = 0; x < xCount; x++) {
for (int y = 0; y < yCount; y++) {
// 比较每个像素点颜色
if (b1.getPixel(x, y) != b2.getPixel(x, y)) {
number++;
}
}
}
if(number < 500) return true;
return false;
}
//灰度化
public Bitmap procSrc2Gray(Bitmap bm){
Mat rgbMat = new Mat();
Mat grayMat = new Mat();
Bitmap graybm = Bitmap.createBitmap(bm.getWidth(), bm.getHeight(), Config.ARGB_8888);
Utils.bitmapToMat(bm, rgbMat);//convert original bitmap to Mat, R G B.
Imgproc.cvtColor(rgbMat, grayMat, Imgproc.COLOR_RGB2GRAY);//rgbMat to gray grayMat
Utils.matToBitmap(grayMat, graybm);
return graybm;
}
//二值化
public Bitmap changeBitmap(Bitmap bm) {
Mat rgbMat = new Mat();
Mat grayMat = new Mat();
Bitmap graybm = Bitmap.createBitmap(bm.getWidth(), bm.getHeight(), Config.ARGB_8888);
Utils.bitmapToMat(bm,rgbMat);
Imgproc.threshold(rgbMat,grayMat,100,255,Imgproc.THRESH_BINARY);
Utils.matToBitmap(grayMat,graybm);
return graybm;
}
// 图像计算
public Bitmap getPicture(Bitmap bmp1, Bitmap bmp2) {
/*
* pixels 接收位图颜色值的数组 offset 写入到pixels[]中的第一个像素索引值 stride
* pixels[]中的行间距个数值(必须大于等于位图宽度)。可以为负数 x 从位图中读取的第一个像素的x坐标值。 y
* 从位图中读取的第一个像素的y坐标值 width 从每一行中读取的像素宽度 height 读取的行数
*/
int m_ImageWidth, m_ImageHeigth;
m_ImageWidth = bmp1.getWidth();
m_ImageHeigth = bmp1.getHeight();
int m_Bmp1Pixel[], m_Bmp2Pixel[], m_Bmp3Pixel[];
m_Bmp1Pixel = new int[m_ImageWidth * m_ImageHeigth];
m_Bmp2Pixel = new int[m_ImageWidth * m_ImageHeigth];
m_Bmp3Pixel = new int[m_ImageWidth * m_ImageHeigth];
bmp1.getPixels(m_Bmp1Pixel, 0, m_ImageWidth, 0, 0, m_ImageWidth,
m_ImageHeigth);
bmp2.getPixels(m_Bmp2Pixel, 0, m_ImageWidth, 0, 0, m_ImageWidth,
m_ImageHeigth);
System.out.println("AAAAAAAAAAAA2");
for (int i = 0; i < m_ImageWidth * m_ImageHeigth; i++) {
if (m_Bmp1Pixel[i] != m_Bmp2Pixel[i]) {
m_Bmp3Pixel[i] = m_Bmp2Pixel[i];
}
}
System.out.println("AAAAAAAAAAAA3");
Bitmap pro = Bitmap.createBitmap(m_ImageWidth, m_ImageHeigth,
Bitmap.Config.ARGB_8888);
pro.setPixels(m_Bmp3Pixel, 0, m_ImageWidth, 0, 0, m_ImageWidth,
m_ImageHeigth);
System.out.println("AAAAAAAAAAAA4");
return pro;
}
//报警系统
public void getPolice(){
if(tempBitmap != null){
if (isEquals(tempBitmap, bitmap_) == true) {
times++;
times_2 = 0;
Log.e("MainActivity", "number:" + times + ";" );
}else{
times_ = 0;
}
}
if(tempBitmap != null && times < police_time){
if (isEquals(tempBitmap, bitmap_) == false){
times = times_;
}
}
//Toast.makeText(MainActivity.this, "number:" + times, Toast.LENGTH_LONG).show();
tempBitmap = bitmap_;
if(times == police_time){
bgBitmap = bitmap;//背景图
bgBitmap_ = procSrc2Gray(bgBitmap);//灰度
bgBitmap_ = changeBitmap(bgBitmap);//二值
//震动提醒
// Vibrator vibrator = (Vibrator)getSystemService(Context.VIBRATOR_SERVICE);
// vibrator.vibrate(1000);
//声音提醒
NotificationManager manger = (NotificationManager) getSystemService(Context.NOTIFICATION_SERVICE);
Notification notification = new Notification();
//自定义声音 声音文件放在ram目录下,没有此目录自己创建一个
//notification.sound=Uri.parse("android.resource://" + getPackageName() + "/" +R.raw.mm);
notification.defaults=Notification.DEFAULT_SOUND;//手机系统提示音
manger.notify(1, notification);
Toast.makeText(MainActivity.this, "开始执行程序", Toast.LENGTH_LONG).show();
}
if(times >police_time){
Log.e(TAG, "action");
// 有结果,则终止线程
if(isEquals(bgBitmap_, bitmap_) == false){
times_2++;
if(times_2 > police_time_){
// 有结果,则终止线程
times = times_;
Intent intent = new Intent(Intent.ACTION_DIAL, Uri.parse("tel:"
+ "1111"));
intent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
startActivity(intent);
}
}
}
}
//报警确认
}
layout
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent" >
<SurfaceView
android:id="@+id/surface_view"
android:layout_width="fill_parent"
android:layout_height="fill_parent" />
<ImageView
android:id="@+id/img_res"
android:scaleType="centerInside"
android:layout_width="150dp"
android:layout_height="150dp"
android:layout_gravity="center_horizontal|bottom" />
FrameLayout>
这地方有几个难点:
1. 如何实现相机帧预览(即相机处于预览状态时,每帧图片多能得到);
关键词 :PreviewCallback
对应的方法:onPreviewFrame
// PreviewCallback
@Override
public void onPreviewFrame(byte[] data, Camera camera) {
// TODO Auto-generated method stub
if (indexFrame++ % 6 != 0)//一秒六帧。可以增加图片处理速度
return;
Size size = camera.getParameters().getPreviewSize();
try {
YuvImage image = new YuvImage(data, ImageFormat.NV21, size.width,
size.height, null);
if (image != null) {
ByteArrayOutputStream stream = new ByteArrayOutputStream();
image.compressToJpeg(new Rect(0, 0, size.width, size.height),
80, stream);
Bitmap bmp = BitmapFactory.decodeByteArray(
stream.toByteArray(), 0, stream.size());
// **********************
// 因为图片会放生旋转,因此要对图片进行旋转到和手机在一个方向上
bmp = rotaingImageView(-90, bmp);
// 图片太大处理较慢,就把图片缩放裁剪
Matrix matrix = new Matrix();
matrix.postScale(0.125f, 0.125f); // 长和宽缩小的比例
bitmap = bmp.createBitmap(bmp, 0, 0, size.height, size.width,
matrix, true);
bitmap_ = procSrc2Gray(bitmap);//灰度
bitmap_ = changeBitmap(bitmap);//二值
//报警
getPolice();
// **********************************
stream.close();
}
} catch (Exception ex) {
Log.e("Sys", "Error:" + ex.getMessage());
}
}
其中,本身手机拍照图片会很大,图片对应显示就会很慢,人眼感觉就会一卡一卡的,除了处理每秒几帧,这里也图片裁切,缩小了
// 图片太大处理较慢,就把图片缩放裁剪
Matrix matrix = new Matrix();
matrix.postScale(0.125f, 0.125f); // 长和宽缩小的比例
bitmap = bmp.createBitmap(bmp, 0, 0, size.height, size.width,
matrix, true);
两个方法:postScale();createBitmap()
2. 怎么去识别相机如何不动;
思路:①将每帧处理的图片保存为tempbitmap ;②下一帧的图片与之比较;③相同times++,不同times = 0;④当times = x 时,即手机不动了。
//手机画面确认不动
if(tempBitmap != null){
if (isEquals(tempBitmap, bitmap_) == true) {
times++;
times_2 = 0;
Log.e("MainActivity", "number:" + times + ";" );
}else{
times_ = 0;
}
}
if(tempBitmap != null && times < police_time){
if (isEquals(tempBitmap, bitmap_) == false){
times = times_;
}
}
3. 相机不动时,如何确认前方有障碍物或者手机在动;
思路相同,就不详细诉说了,代码多有
当时除了这些问题还有一些简单的问题卡了我好久,
1.相机如何自动对焦(要用时调用starFocus()):
// 自动对焦
Timer timer = new Timer(true);
TimerTask task = new TimerTask() {
public void run() {
// 每次需要执行的代码放到这里面
// 实现自动对焦
mCamera.autoFocus(null);
}
};
public void startFocus() {
timer.schedule(task, 0, 3000);
}
2.如何比较两组图片是否为相同(我能力有限不能让所有rgb值一样,所以就取了一个约值,2%-3%)
处理最重要的地方:将比较的两幅图片,灰度化并且二值化,不然你会很惨的
// 比较图片
public boolean isEquals(Bitmap b1, Bitmap b2) {
int xCount = b1.getWidth();
int yCount = b1.getHeight();
int number = 0;
for (int x = 0; x < xCount; x++) {
for (int y = 0; y < yCount; y++) {
// 比较每个像素点颜色
if (b1.getPixel(x, y) != b2.getPixel(x, y)) {
number++;
}
}
}
if(number < 500) return true;
return false;
}
二值化,灰度化:
//灰度化
public Bitmap procSrc2Gray(Bitmap bm){
Mat rgbMat = new Mat();
Mat grayMat = new Mat();
Bitmap graybm = Bitmap.createBitmap(bm.getWidth(), bm.getHeight(), Config.ARGB_8888);
Utils.bitmapToMat(bm, rgbMat);//convert original bitmap to Mat, R G B.
Imgproc.cvtColor(rgbMat, grayMat, Imgproc.COLOR_RGB2GRAY);//rgbMat to gray grayMat
Utils.matToBitmap(grayMat, graybm);
return graybm;
}
//二值化
public Bitmap changeBitmap(Bitmap bm) {
Mat rgbMat = new Mat();
Mat grayMat = new Mat();
Bitmap graybm = Bitmap.createBitmap(bm.getWidth(), bm.getHeight(), Config.ARGB_8888);
Utils.bitmapToMat(bm,rgbMat);
Imgproc.threshold(rgbMat,grayMat,100,255,Imgproc.THRESH_BINARY);
Utils.matToBitmap(grayMat,graybm);
return graybm;
}
这里关于opencv的运用前面的博客有详细说明。