- cs231n_深度之眼第二次作业
Jie_Cheney
图像分类数据和label分别是什么?图像分类存在的问题与挑战?图像分类数据包括训练集测试集的数据,在有监督的问题中对于训练集数据来说是有label的,而测试集是等待我们去识别它的类别,不具有label。label就是分类标签,比如cifar10这个数据集,待分类的这10类数据我们可以写成1-10,或者0-9这就叫做label。图像分类存在的问题与挑战:光照,角度,形变,遮挡。使用python加载一
- 向量,矩阵和张量的导数 | 简单的数学
橘子学AI
前段时间看过一些矩阵求导的教程,在看过的资料中,尤其喜欢斯坦福大学CS231n卷积神经网络课程中提到的Erik这篇文章。循着他的思路,可以逐步将复杂的求导过程简化、再简化,直到发现其中有规律的部分。话不多说,一起来看看吧。作者:ErikLearned-Miller翻译:橘子来源:橘子AI笔记(datawitch)本文旨在帮助您学习向量、矩阵和高阶张量(三维或三维以上的数组)的求导方法,以及如何求对
- cs231n assignment1——SVM
柠檬山楂荷叶茶
cs231n支持向量机python机器学习
整体思路加载CIFAR-10数据集并展示部分数据数据图像归一化,减去均值(也可以再除以方差)svm_loss_naive和svm_loss_vectorized计算hinge损失,用拉格朗日法列hinge损失函数利用随机梯度下降法优化SVM在训练集和验证集计算准确率,保存最好的模型在测试集进行预测计算准确率加载展示划分数据集加载CIFAR-10数据集#LoadtherawCIFAR-10data.
- (2023版)斯坦福CS231n学习笔记:DL与CV教程 (12) | 视觉模型可视化与可解释性(Visualizing and Understanding)
女王の专属领地
计算机视觉#计算机视觉#学习笔记
前言笔记专栏:斯坦福CS231N:面向视觉识别的卷积神经网络(23)课程链接:https://www.bilibili.com/video/BV1xV411R7i5CS231n:深度学习计算机视觉(2017)中文笔记:https://zhuxiaoxia.blog.csdn.net/article/details/801551662023最新课程PPT:https://download.csdn.
- 2019-02-25~~2019-03-03 第十周周末复盘
仰望星空的小狗
一、任务清单1、刷leetcode题目(7道)2、听tensorflow,cs231n和cv课程3、技术文档输出4、恢复早起的作息二、反思1、自从年前工作非常忙,加上遇上一些郁闷的事情,导致年前到现在时间记录中断了很长一段时间。本周开始恢复时间记录,日打卡,周复盘。2、生活中不论谁,肯定会时不时遇上一些令人郁闷的事情,这些郁闷的事情很可能会打乱原本的生活节奏。但是,生活还有很长的路要走,不应该因为
- 训练神经网络(上)激活函数
笔写落去
深度学习神经网络人工智能深度学习
本文介绍几种激活函数,只作为个人笔记.观看视频为cs231n文章目录前言一、Sigmoid函数二、tanh函数三、ReLU函数四、LeakyReLU函数五、ELU函数六.在实际应用中寻找激活函数的做法总结前言激活函数是用来加入非线性因素的,提高神经网络对模型的表达能力,解决线性模型所不能解决的问题。一、Sigmoid函数这个函数大家应该熟悉在逻辑回归中曾用到这个sigmoid函数这个函数可以将负无
- 卷积神经网络
weixin_34283445
人工智能
https://zhuanlan.zhihu.com/p/27642620关于卷积神经网络的讲解,网上有很多精彩文章,且恐怕难以找到比斯坦福的CS231n还要全面的教程。所以这里对卷积神经网络的讲解主要是以不同的思考侧重展开,通过对卷积神经网络的分析,进一步理解神经网络变体中“因素共享”这一概念。注意:该文会跟其他的现有文章有很大的不同。读该文需要有本书前些章节作为预备知识,不然会有理解障碍。没看
- CS231n 作业答案
tech0ne
CS231n三次大作业:#第一次作业##原始包下载:作业一完成包地址:作业一JupyterNotebook结果:KNNSVMSoftmaxTwolayernetFeatures第二次作业原始包下载:作业二完成包地址:作业二JupyterNotebook结果:FullyConnectedNetsBatchNormalizationDropoutConvolutionalNetworksTensorf
- cs231n作业-assignment1
momentum_
AIpython机器学习numpy
assignment1(cs231n)文章目录assignment1(cs231n)KNN基础计算distances方法一:双层循环计算distances方法二:单层循环计算distances方法三:无循环根据dists找到每个测试样本的种类KNN模型汇总交叉验证KNN基础计算distances方法一:双层循环dists矩阵是(num_test,num_train)500*5000defcompu
- 【深度学习理论】(1) 损失函数
立Sir
深度学习理论机器学习人工智能神经网络深度学习损失函数
各位同学好,最近学习了CS231N斯坦福计算机视觉公开课,讲的太精彩了,和大家分享一下。已知一张图像属于各个类别的分数,我们希望图像属于正确分类的分数是最大的,那如何定量的去衡量呢,那就是损失函数的作用了。通过比较分数与真实标签的差距,构造损失函数,就可以定量的衡量模型的分类效果,进而进行后续的模型优化和评估。构造损失函数之后,我们的目标就是将损失函数的值最小化,使用梯度下降的方法求得损失函数对于
- 线性分类器--数据处理
骆驼穿针眼
计算机视觉与深度学习深度学习
数据集划分通常按照70%,20%,10%来分数据集数据处理斯坦福的线性分类器体验http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/
- 【CS231n】-学习笔记-1-Intro to Computer Vision, historical context.
Alice熹爱学习
计算机视觉计算机视觉CS231nDeepLearningPYTHON
Class:http://cs231n.stanford.eduSchedule:http://cs231n.stanford.edu/syllabus.htmlSlides:http://vision.stanford.edu/teaching/cs231n/slides/winter1516_lecture1.pdfVideo:https://www.youtube.com/watch?v=N
- 笔记00-杜克大学公开课,图像和视频处理:从火星到好莱坞
木木爱吃糖醋鱼
笔记内容介绍》ImageandVideoProcessing:FromMarstoHollywoodwithaStopattheHospital算起来是2017年中的时候,因为要搞深度学习的东西,就自学了斯坦福cs231n的神经网络的课。Youtube上有至少两期的公开课视频。好像从李飞飞离职之后,截止到2017年春季,就没再继续了。现在想想哪门课的内容挺多挺繁杂的。虽然是本科的课,最后好像每个学
- 向量对向量求导,链式法则
构建的乐趣
向量对向量求导
这还算不得向量微积分里多么主干的内容,只是一个小技术,但是数学推导很多时候就会用到。http://cs231n.stanford.edu/vecDerivs.pdf这个文献是一个好文献。另优秀翻译:https://zhuanlan.zhihu.com/p/142668996链式法则注意:这里的乘法变成了innerproduct推导过程中比较关键的点:除了利用这文献所讲的分量慢慢推,还有一个要点,首
- Win10上关于cs231n(2017)课后作业的环境配置
Diane小山
开始首先,这篇文章是针对那些想完成cs231n作业,但是觉得装linux双系统很麻烦的童鞋。cs231n作业的SetUp官方教程只针对了那些使用Unix(Ubuntu,Macos等)的人,对使用Windows的人十分不友好。安装anaconda百度一篇anaconda的安装教程,照着安装即可。这里需要提醒的有两点:国内的anaconda镜像能用的基本都挂了,所以还是老老实实去官方网站下载吧:)一定
- CS231N assignment2 SVM
weixin_30363509
数据结构与算法人工智能python
CS231NAssignment2SupportVectorMachineBegin本文主要介绍CS231N系列课程的第一项作业,写一个SVM无监督学习训练模型。课程主页:网易云课堂CS231N系列课程语言:Python3.61线形分类器以图像为例,一幅图像像素为32*32*3代表长32宽32有3通道的衣服图像,将其变为1*3072的一个向量,即该图像的特征向量。我们如果需要训练1000幅图像,那
- 【AI】斯坦福CS231n课程练习(1)—— KNN和SVM分类
李清焰
CS231nKNNSVM
文章目录一、前言1、CS231n是啥?2、本篇博客任务3、使用的数据集二、知识准备1、KNN是什么?2、SVM是什么?SVM的组成:三、实验——KNN和SVM分类1、KNN图片分类(重要步骤将在目录上体现)(1)在colab上切换目录,加载dataset(2)加载包、设置和外部模块(3)加载、初步处理数据(4)可视化打印一些图片看看我们的数据集长什么样(5)对测试、训练数据进行分组(6)创建KNN
- 深度学习系列之cs231n assignment1 KNN(二)
明曦君
深度学习python机器学习
写在前面:久经周折,终于能够将KNN系列给大家继续分享了,这次的内容来源于李飞飞教授团队的cs231n深度学习课程的作业1中的KNN研究,我会在全文我遇到困难的地方进行分享,以及一些想法。内容安排深度学习系列依托与cs231n的课程作业,因为只想练习编程,所以不对课程内容进行分享,仅针对编程内容进行分享。那么这一次的分享就是assignment1中K近邻分类器的使用,以及完成其中的四个问题,这四个
- cs231n assignment2(3)
没天赋的学琴
assignment2的第三部分,是熟悉深度学习框架pytorch或者tensorflow,这里选择的是使用pytorch框架。该部分主要通过三个层次:Barebones、ModuleAPI、SequentialAPI,来了解pytorch。Barebones在该层次中,需要利用pytorch所提供的一些函数,不仅需要定义神经网络的结构,同时还需编写网络的前向传播以及模型的训练部分;而参数的梯度可
- 第三十三周学习笔记
luputo
学习笔记
第三十三周学习笔记CS231nDeepLearningSoftwareCPUvsGPUCPU:Fewercores,buteachcoreismuchfasterandmuchmorecapable;greatatsequentialtasksGPU:Morecores,buteachcoreismuchslowerand“dumber”;greatforparalleltasks(matrixm
- CNN(卷积神经网络)、RNN(循环神经网络)、DNN,LSTM
weixin_34174132
人工智能
http://cs231n.github.io/neural-networks-1https://arxiv.org/pdf/1603.07285.pdfhttps://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/Appli
- CNN笔记:通俗理解卷积神经网络
I_O_fly
神经网络cnn神经网络深度学习
通俗理解卷积神经网络(cs231n与5月dl班课程笔记)1前言2012年我在北京组织过8期machinelearning读书会,那时“机器学习”非常火,很多人都对其抱有巨大的热情。当我2013年再次来到北京时,有一个词似乎比“机器学习”更火,那就是“深度学习”。本博客内写过一些机器学习相关的文章,但上一篇技术文章“LDA主题模型”还是写于2014年11月份,毕竟自2015年开始创业做在线教育后,太
- Knn算法与 Svm算法对比
一个不知名的码农
支持向量机算法机器学习
Knn算法与Svm算法对比这里首先借用一个博主所做的图表,讲的很有理有据(7条消息)[cs231n]KNN与SVM区别_Rookie’Program的博客-CSDN博客_knn和svm的区别这里我们来讲一下我对这两个算法的理解knn看起来就是比较简单的一个数学模型,就是划范围论,精细程度实际上可能没有svm好,并且测试量也不能大,数据一大,处理起来又很麻烦,预测效率也比较低。相反的svm和knn对
- 斯坦福大学CS520知识图谱系列课程学习笔记:第一讲什么是知识图谱
ngl567
随着知识图谱在人工智能各个领域的广泛使用,知识图谱受到越来越多AI研究人员的关注和学习,已经成为人工智能迈向认知系统的关键技术之一。之前,斯坦福大学的面向计算机视觉的CS231n和面向自然语言处理的CS224n成为了全球非常多AI研究人员的入门经典学习课程。因此,斯坦福大学于今年3月开设了一门专门面向知识图谱的系列课程CS520,官网课程页:https://web.stanford.edu/cla
- 北京邮电大学 计算机视觉与深度学习 鲁鹏 计算机视觉概述课程手迹
qinyaoze
机器学习CV手记计算机视觉人工智能深度学习
课程笔记计算机视觉=输入(认知神经科学-理论,运用方法&算法,硬件)+输出(机器人)课程:图像处理-CS131,图像结构-CS231a,图像理论-CS230/CS231nQ-象棋与人工智能的关系?IBM-深蓝,Google-AlphaGo>>机器赢得象棋胜利=强大的搜索算法目标:语义鸿沟,即建立图像像素核语义间的关系发展过程:系统出现-物种大繁荣>>理论研究-猫视觉神经>>积木世界>>MIT图像处
- 国外AI大牛推荐的10大最有帮助免费在线机器学习课程
机器学习与系统
woman_ml.jpg本文编译自twitter用户chipro斯坦福在线自学课程《概率与统计》:该课程涉及概率统计的基本概念,涵盖机器学习4个基本方面:探索性数据分析,产生数据,概率和推理。MIT的《线性代数》:这是我见过的最好的线性代数课程,由传奇教授GilbertStrang(吉尔伯特斯特朗)教授。斯坦福的CS231N:用于视觉识别的卷积神经网络:平衡理论与实践。课堂笔记写得很好,解释了不同
- CS231n学习笔记--计算机视觉历史回顾与介绍1
听城
CS231n简介首先我们来看看官方对这门课的介绍:计算机视觉在社会中已经逐渐普及,并广泛运用于搜索检索、图像理解、手机应用、地图导航、医疗制药、无人机和无人驾驶汽车等领域。而这些应用的核心技术就是图像分类、图像定位和图像探测等视觉识别任务。近期神经网络(也就是“深度学习”)方法上的进展极大地提升了这些代表当前发展水平的视觉识别系统的性能。本课程将深入讲解深度学习框架的细节问题,聚焦面向视觉识别任务
- 计算机视觉实战项目(图像分类+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别)
阿利同学
计算机视觉分类目标检测
图像分类教程博客_传送门链接:链接在本教程中,您将学习如何使用迁移学习训练卷积神经网络以进行图像分类。您可以在cs231n上阅读有关迁移学习的更多信息。本文主要目的是教会你如何自己搭建分类模型,耐心看完,相信会有很大收获。废话不多说,直切主题…首先们要知道深度学习大都包含了下面几个方面:1.加载(处理)数据2.网络搭建3.损失函数(模型优化)4模型训练和保存把握好这些主要内容和流程,基本上对分类模
- cs231n assignment2(2)
没天赋的学琴
assignment2的第二部分的内容,实现一个卷积神经网络。这一部分主要是实现卷积神经网络中的一些所需用到的layer类型:卷积层(convolution)和池化层(这里是实现max-pooling)。这部分的实现是不考虑其运行效率,而在真正的实现应用上,卷积神经网络的运行效率是一个很重要的问题。卷积层卷积层是由一个个过滤器(filter),每个过滤器的尺寸为:,这里的的大小与输入的图像或act
- cs231n作业:Assignment1-Softmax
Diane小山
softmax.pydefsoftmax_loss_naive(W,X,y,reg):"""Softmaxlossfunction,naiveimplementation(withloops)InputshavedimensionD,thereareCclasses,andweoperateonminibatchesofNexamples.Inputs:-W:Anumpyarrayofshape(
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出