R语言的科学编程与仿真-第三章答案

# R语言的科学编程与仿真-第三章习题解答
 #chapter 3

# problem 1
   if (x <= 0){
     y = -x^3
     } else if(x>0 & x<=1){
       y = x^2
     } else {
       y = sqrt(x)
     }
   # input
   x.values <- seq(-2,2,by=0.1)
   # for each x calculate y
   n <- length(x.values)
   y.values <- rep(0,n)
   for (i in 1:n){
     x <- x.values[i]
    # x <- 0.5
     # expression for y
     if (x <= 0){
       y = -x^3
     } else if(x>0 & x<=1){
       y = x^2
     } else {
       y = sqrt(x)
     }
     y.values[i] <- y
   } 
   # output
   plot(x.values,y.values,type = "l")
题一图:
 
  
 # problem 2
   # 参数初始化
   x <- 6.6
   n <- 8
   h <- 0
   for(i in 0:n){
     h = h + x^i
   }
   # x=0.3 n=55 outcome = [1] 1.428571428571429
   # x=6.6 n= 8 outcome = [1] 4243335.538178558
   # 函数式编程
   h <- function(x,n){
     k <- rep(0,n+1)
     for(i in 0:n){
       k[i]= x^i # 因为k[i]只能从k[1]开始,这里x^0无法赋值给k[0]
     }
     return(sum(k)+1) # 故,这里需要将x^0=1加上
   }
   h(n=4,x=2) # 可以验证 h(n=4,x=2)=31
  # problem 3
   h(0.3,55) # outcome [1] 1.428571
   options(digits = 16) # 没有这行命令,结果为[1] 4243336
   h(6.6,8)    # 结果 [1] 4243335.538178558
    # 结果与书上的一致,证明题二的编程是正确的
  # problem 4
   #  用 while 循环
    # 参数初始化
   x <- .3
   n <- 55
   i <- 0
   h <- 0
   while(i <= n){
     h = h+ x^i
     i = i + 1
   }
    # 可以验证上述程序的结果与书上的一致
   # 向量化
   x <- 0.3
   n <- 55
   i <- seq(0,n,by=1)
   h <- sum(x^i)
   # 函数化
   h <- function(x,n){
     i = seq(0,n,by = 1)
     return(sum(x^i))
   }
   # 可以验证 h(0.3,55),h(6.6,8)与书上的结果一致
  # problem 5
    v <- matrix(c(2,2),nrow = 2,ncol = 1) # 生成一个二维列向量
    vec <-as.vector(c(2,2))   # 生成一个二维行向量
    theta <- pi/2   # 旋转角度
    t <- matrix(c(cos(theta),-sin(theta),sin(theta),cos(theta)),nrow = 2,ncol = 2,byrow = T)
    vec%*%t # 行向量右乘旋转矩阵
     #       [,1] [,2]
     # [1,]    2   -2
    
    t%*%v   # 列向量左乘旋转矩阵
     #        [,1]
     #  [1,]   -2
     #  [2,]    2
  # problem 6
     # 用循环
    x <- seq(1,10,by=1) 
    h <- 1
    for(i in 1:10){
      h=h*sqrt(x[i])
    } 
     # h = [1] 1904.941
     # 向量化
    sqrt(prod(x))
     # [1] 1904.941
  # problem 7
    y <- seq(1,100,by=1)
    y.sum <- sum(y[which(y %% 3 == 0 )])
  # problem 8
    
    # xian fang yi xia
  # problem 9
    # 略
  # problem 10
    x <- seq(100,1,by=-1)
    x <- c(3,6,2,7,1,5,6,9,10,5,20,41,23,15,74,92,6)
    x.min <- x[1]
    for(i in 1:length(x)){
      if(x.min <= x[i]){
        x.min = x.min
      } else {
        x.min = x[i]
      } 
    }
    # x.min = [1] 1
  # problem 11
    # 没怎么看懂题目
    # 不能用sort 函数的话,也就是需要自己编写排序算法
  # problem 12
    x <- sum(ceiling(6*runif(2)))
    if (x == 7 || x == 11){
      cat(" I am the winner")
    } else if (x == sum(ceiling(6*runif(2)))){
      cat(" i am  the winner")
    } else {
      cat(" you are the loser")
    }
     # 选中以上程序,多次运行可以验证,该程序能随机输出
     # I am the winner, i am the winner, you are the loser 这三句
  # problem 13
    t <- seq(0,10,by=0.01)
    xvalues <- sqrt(t)*cos(2*pi*t)
    yvalues <- sqrt(t)*sin(2*pi*t)
    plot(xvalues,yvalues,type = "l")
    # 也可以用类似 题一 的方式
    t <- seq(0,10,by=0.01)
    x <- rep(0,length(t))
    y <- rep(0,length(t))
   for(i in 1:length(t)){
     x[i] = sqrt(t[i])*cos(2*pi*t[i])
     y[i] = sqrt(t[i])*sin(2*pi*t[i])
   } 
    plot(x,y,type = "l")
    # 可以验证,这两种方式画出的图是一样的 


 
  
题13图:
by = 0.1:
by = 0.01
 
 

你可能感兴趣的:(R语言的科学编程与仿真-第三章答案)