- kafka + flink +mysql 案例
angen2018
javakafkaflink
假设你有两个Kafka主题:user_activities_topic和product_views_topic,并且你希望将user_activities_topic中的数据写入到user_activities表,而将product_views_topic中的数据写入到product_views表。mavenorg.apache.flinkflink-streaming-java_2.121.14
- 数据湖架构与实时数仓实践:Hudi、Iceberg、Kafka + Flink + Spark
晴天彩虹雨
架构kafkaflink数据仓库
1.引言:数据湖与数据仓库的融合趋势在大数据时代,传统的数据仓库(DataWarehouse,DW)因其强一致性和高效查询能力,一直是企业数据分析的核心。然而,随着数据量和数据类型的爆炸式增长,传统数据仓库的存储成本和数据管理难度逐渐增加。为了解决这些问题,数据湖(DataLake)概念应运而生。数据湖能够存储原始数据,支持半结构化和非结构化数据,提供更灵活的计算框架,但其缺乏事务管理和数据一致性
- Flink 实战:如何计算实时热门合约
WuJiWeb3
区块链链上数据分析flink大数据web3数据分析智能合约kafkabigdata
本文将通过使用Flink框架实现实时热门合约需求。实际业务过程中,如何判断合约是否属于热门合约,可以从以下几个方面进行分析,比如:交易数量:合约被调用的次数可以作为其热门程度的指标之一。交易金额:合约处理的资金量也是评判热门程度的重要指标。活跃用户数量:调用合约的用户数量可以反映合约的受欢迎程度。交易频率:合约的调用频率可以反映其热门程度和使用情况。但我们本次目的主要是关于学习FlinkAPI的一
- Hadoop、Spark、Flink Shuffle对比
逆袭的小学生
hadoopsparkflink
一、Hadoop的shuffle前置知识:Map任务的数量由Hadoop框架自动计算,等于分片数量,等于输入文件总大小/分片大小,分片大小为HDFS默认值128M,可调Reduce任务数由用户在作业提交时通过Job.setNumReduceTasks(int)设置数据分配到Reduce任务的时间点,在Map任务执行期间,通过Partitioner(分区器)确定每个键值对的目标Reduce分区。默认
- 大数据Flink(六十四):Flink运行时架构介绍_flink中涉及到的大数据组件
2401_84181942
程序员大数据flink架构
于是人们提出了“不共享任何东西”(share-nothing)的分布式架构。从以Greenplum为代表的MPP(MassivelyParallelProcessing,大规模并行处理)架构,到Hadoop、Spark为代表的批处理架构,再到Storm、Flink为代表的流处理架构,都是以分布式作为系统架构的基本形态的。我们已经知道,Flink就是一个分布式的并行流处理系统。简单来说,它会由多个进
- 大数据运维实战指南:零基础入门与核心技术解析(第一篇)
emmm形成中
大数据运维
大数据运维实战指南:零基础入门与核心技术解析(第一篇)系列文章目录第一篇:大数据运维概述与核心技能体系第二篇:Hadoop生态体系与集群部署实战第三篇:分布式存储系统运维与优化第四篇:资源调度框架YARN/K8s深度解析第五篇:实时计算框架Flink/Spark运维指南第六篇:大数据监控体系与自动化运维第七篇:云原生时代的大数据运维实践第八篇:数据安全与合规性管理第九篇:性能调优与故障排查案例集第
- 快慢指针【等分链表、判断链表中是否存在环】
山风wind
JAVA基础链表java网络
一、等分链表:找到链表的中间节点Java实现classListNode{intval;ListNodenext;ListNode(intval){this.val=val;this.next=null;}}publicclassMiddleOfLinkedList{publicListNodefindMiddleNode(ListNodehead){if(head==null){returnnul
- flink入门
Thomas2143
总结flinkscalakafka
flink安装flink本地安装demo运行本地模式安装|ApacheFlinkflink1.13.1为例:cd/optwgethttps://mirrors.advancedhosters.com/apache/flink/flink-1.13.1/flink-1.13.1-bin-scala_2.12.tgz
- Apache Flink详解:流处理与批处理的强大框架
微笑听雨。
大数据apacheflink大数据
ApacheFlink详解:流处理与批处理的强大框架ApacheFlink是一个开源的流处理框架,旨在处理大规模数据流。Flink能够处理实时流数据和批处理数据,具有高吞吐量、低延迟、容错等特性。以下是对Flink的详细介绍:核心概念流与批处理:流处理(StreamProcessing):持续不断地处理实时生成的数据流。批处理(BatchProcessing):处理已经收集好的静态数据集。Data
- Flink的市场竞争力:大数据浪潮中的“潜力股”还是“青铜”?
狮歌~资深攻城狮
大数据
Flink的市场竞争力:大数据浪潮中的“潜力股”还是“青铜”?嘿,各位小伙伴!今天咱来聊聊Flink在市场中的竞争力这个超有意思的话题。你要是搞大数据的,那肯定对Flink不陌生;要是还不太懂的,也别担心,咱就像唠家常一样把这事给你讲清楚。一、Flink市场竞争力啥意思?咱先说说这市场竞争力是个啥。打个比方,它就好比一场商场大促,每个品牌都在拼命展示自己的优势,吸引顾客掏钱包。Flink在市场里也
- 【Flink】(二)详解 Flink 运行架构_flink的运行架构负荷分担是什么
2301_82242724
flink架构大数据
作业管理器(JobManager)、资源管理器(ResourceManager)、任务管理器(TaskManager),以及分发器(Dispatcher)。因为Flink是用Java和Scala实现的,所以所有组件都会运行在Java虚拟机上。每个组件的职责如下:作业管理器(JobManager)控制一个应用程序执行的主进程,也就是说,每个应用程序都会被一个不同的JobManager所控制执行。Jo
- flink分发策略详解
24k小善
flink大数据java
一、分发策略核心逻辑与分类Flink的数据分发策略决定了数据在算子间上下游的传输方式,直接影响作业的并行度利用、负载均衡、网络开销。其核心分类如下:1.本地通信策略Forward适用场景:上下游算子并行度相同且为一对一传输(如Source→Map)。特点:数据不跨节点,直接通过内存传递,零网络开销。限制:必须保证上下游并行度严格一致,否则抛出异常。Rescale适用场景:上下游并行度成整数倍关系(
- 【Flink银行反欺诈系统设计方案】1.短时间内多次大额交易场景的flink与cep的实现
*星星之火*
Flink反欺诈flink大数据flink反欺诈
【flink应用系列】1.Flink银行反欺诈系统设计方案1.经典案例:短时间内多次大额交易1.1场景描述1.2风险判定逻辑2.使用Flink实现2.1实现思路2.2代码实现2.3使用Flink流处理3.使用FlinkCEP实现3.1实现思路3.2代码实现4.总结1.经典案例:短时间内多次大额交易1.1场景描述规则1:单笔交易金额超过10,000元。规则2:同一用户在10分钟内进行了3次或更多次交
- 【Flink银行反欺诈系统设计方案】4.Flink CEP 规则表刷新方式
*星星之火*
Flink反欺诈flinkjava数据库
【Flink银行反欺诈系统设计方案】4.FlinkCEP规则表刷新方式概要1.**实现思路**2.**代码实现**2.1定义POJO2.2规则加载与动态更新2.3动态规则更新与CEP模式匹配3.**规则更新的触发机制**3.1定期加载规则3.2监听规则变化4.**总结**概要在FlinkCEP中,规则的动态更新是一个关键需求,尤其是在风控系统中,规则可能会频繁调整。为了实现规则的动态更新,我们可以
- TiDB系列之:使用Flink TiDB CDC Connector采集数据
快乐骑行^_^
日常分享专栏TiDB系列使用FlinkTiDBCDCConnector采集数据
TiDB系列之:使用FlinkTiDBCDCConnector采集数据一、依赖项二、Maven依赖三、SQLClientJAR四、如何创建TiDBCDC表五、连接器选项六、可用元数据七、特征一次性处理启动阅读位置多线程读取DataStreamSource八、数据类型映射TiDBCDC连接器允许从TiDB数据库读取快照数据和增量数据。本文档介绍如何设置TiDBCDC连接器以对TiDB数据库运行SQL
- SpringBoot集成Flink-CDC
whiteBrocade
springflinkmysqljava-activemqkafkaelasticsearch
FlinkCDCCDC相关介绍CDC是什么?CDC是ChangeDataCapture(变更数据获取)的简称。核心思想是,监测并捕获数据库的变动(包括数据或数据表的插入、更新以及删除等),将这些变更按发生的顺序完整记录下来,写入到MQ以供其他服务进行订阅及消费CDC分类CDC主要分为基于查询和基于Binlog基于查询基于Binlog开源产品Sqoop、DataXCanal、Maxwell、Debe
- flink重启策略
24k小善
flink大数据java
一、重启策略核心意义Flink重启策略(RestartStrategy)是容错机制的核心组件,用于定义作业在发生故障时如何恢复执行。其核心目标为:最小化停机时间:快速恢复数据处理,降低业务影响。平衡资源消耗:避免无限重启导致集群资源耗尽。状态一致性保障:与Checkpoint机制协同,确保Exactly-Once语义。二、四大重启策略详解1.固定延迟重启(FixedDelayRestart)机制:
- 学习Flink:一场大数据世界的奇妙冒险
狮歌~资深攻城狮
大数据
学习Flink:一场大数据世界的奇妙冒险嘿,朋友们!今天咱们来聊聊怎么学习Flink这个在大数据界超火的玩意儿相信很多小伙伴都听说过它,但不知道从哪儿开始下手,别愁,听我慢慢唠唠~一、学习Flink前的“装备”准备想象一下,你要去攀登一座高峰学习Flink也得先做好准备工作呀。首先,你得熟悉一门编程语言,Java或者Scala比较好。Java就像是你出门的常用交通工具大家都比较熟悉,找资料、学教程
- 基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
flink大数据实时计算
这篇教程将展示如何基于FlinkCDCYAML快速构建MySQL到Kafka的流式数据集成作业,包含整库同步、表结构变更同步的演示和特色功能的介绍。本教程的演示都将在FlinkCDCCLI中进行,无需一行Java/Scala代码,也无需安装IDE。准备阶段准备FlinkStandalone集群下载Flink1.19.2,解压后得到flink-1.19.2目录。使用下面的命令跳转至Flink目录下,
- Databend 产品月报(2025年2月)
数据库
很高兴为您带来Databend2025年2月的最新更新、新功能和改进!我们希望这些增强功能对您有所帮助,并期待您的反馈。从MySQL迁移到DatabendDatabend推荐使用db-archiver进行MySQL批量迁移,使用FlinkCDC进行实时变更数据捕获(CDC)迁移。教程已更新:使用db-archiver从MySQL迁移使用FlinkCDC从MySQL迁移设置会话标签现在,您可以为会话
- Flink CDC + Oracle Demo
缘上寒山
flinkoracle
本文用于说明Flink集成oraclecdc的方式pom.xml1.13.32.12org.apache.flinkflink-java${flink.version}provided-->org.apache.flinkflink-clients_2.11${flink.version}com.ververicaflink-connector-oracle-cdcprovided-->
- Flink CEP原理与代码实例讲解
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
FlinkCEP原理与代码实例讲解1.背景介绍1.1什么是复杂事件处理CEP复杂事件处理(ComplexEventProcessing,CEP)是一种用于分析事件流的技术。它可以从多个事件源中实时检测复杂的事件模式,进而推断有意义的事件或做出及时响应。CEP在金融、物联网、安全等领域有广泛应用。1.2FlinkCEP简介Flink是一个开源的分布式流处理框架,具有低延迟、高吞吐、准确性和良好的容错
- 【Flink银行反欺诈系统设计方案】反欺诈系统全生命周期设计
*星星之火*
Flink反欺诈flink大数据
【Flink银行反欺诈系统设计方案】反欺诈系统全生命周期设计概要:1.事前反欺诈准备核心模块与架构:2.事中反欺诈发现与告警核心模块与架构:3.事后反欺诈事件分析核心模块与架构:4.反欺诈闭环架构设计整体技术栈:5.关键设计原则示例:高风险交易拦截流程6.演进方向概要:设计银行反欺诈系统需要构建一个覆盖事前、事中、事后的全生命周期闭环体系,结合实时检测、离线分析、动态策略调整与持续优化。以下是具体
- Flink Oceanbase Connector详解
24k小善
flink大数据java
FlinkOceanBaseConnector是ApacheFlink提供的一个用于连接OceanBase数据库的插件。它允许Flink读取和写入OceanBase数据库中的数据,支持实时数据处理和流式数据集成。以下是对FlinkOceanBaseConnector的详细解析:1.核心功能FlinkOceanBaseConnector的核心功能包括:功能模块描述实时数据读取支持从OceanBase
- 小白进阶高手:使用Flink开发实时数仓的经验与技巧(理论结合超多实例)
大模型大数据攻城狮
flink大数据flink开发CEPflink反压flink多流flink容错
Flink作为一种流处理框架,在实时数仓的开发中发挥着关键作用。它能够处理大量实时数据流,支持复杂的事件处理、实时计算和监控,具有高吞吐、低延迟的优势。本文将结合实际开发经验,深入探讨如何利用Flink构建高效的实时数仓,包括系统架构、开发技巧和常见问题的解决方法。目录一、实时数仓的架构概览1.实时数仓架构的关键组件2.典型的架构流程3.数据模型设计二、Flink实时数仓的开发流程1.准备环境2.
- Flink学习方法
狮歌~资深攻城狮
大数据
嘿,各位小白小伙伴们!如果你正打算学习Flink,或者刚刚开始接触Flink,别担心,很多人都是从这个阶段走过来的今天我就来给大家分享一些学习Flink的建议,希望能帮到你一、了解Flink是什么在正式开始学习之前,我们得先搞清楚Flink到底是个啥简单来说,Flink就像是一个超级高效的数据处理“小能手”它可以快速地处理大量的数据,就像一个勤劳的快递员能够迅速准确地把包裹送到目的地。比如说,在电
- FlinkCEP社区资源指南:学习与交流平台
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
FlinkCEP社区资源指南:学习与交流平台1.背景介绍ApacheFlink是一个开源的分布式大数据处理引擎,支持有状态计算和准确一次的流处理语义。Flink提供了强大的流处理能力,其中FlinkCEP(复杂事件处理)是一个非常重要的特性,允许从无边界的事件流中发现有趣的事件模式。CEP在许多领域都有广泛应用,例如:金融服务:检测欺诈行为、交易模式等物联网:监控传感器数据,检测异常情况业务流程监
- 深入探秘FlinkCDC:实时数据处理的新利器
lucky_syq
大数据大数据flink
一、写在前面在大数据领域持续蓬勃发展的当下,数据的实时处理与分析变得愈发关键。随着企业数字化转型进程的加速,业务系统产生的数据量呈爆发式增长,传统的数据处理方式已难以满足对数据时效性和分析实时性的严苛要求。在这样的大背景下,FlinkCDC应运而生,它作为一种强大的实时数据同步与处理工具,为大数据处理带来了全新的解决方案,在大数据生态体系中占据着举足轻重的地位。FlinkCDC,即FlinkCha
- Flink keyBy 算子源码与设计理念分析
java
大家好,我是大圣,很高兴又和大家见面。今天我们来探究一下Flink使用keyBy算子的时候到底发生了什么,看完这篇文章,你会豁然开朗。keyBy算子基本知识keyBy会发生什么专业解释keyBy使得相同key的数据会进入同一个并行子任务,每一个子任务可以处理多个不同的key。这样使数据保证了有序性,并且每个子任务直接相互隔离。我们确保了相同键的数据在逻辑上是有序的。即使在高度并行的环境中,具有相同
- Flink----常见故障排除
天冬忘忧
Flink大数据flink
目录常见故障排除1非法配置异常2Java堆空间异常3直接缓冲存储器异常4元空间异常5网络缓冲区数量不足6超出容器内存异常7Checkpoint失败7.1CheckpointDecline7.2CheckpointExpire8Checkpoint慢SourceTriggerCheckpoint慢:使用增量Checkpoint:作业存在反压或者数据倾斜:Barrier对齐慢主线程太忙,导致没机会做s
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比