keras 或 tensorflow 调用GPU报错:Blas GEMM launch failed

GPU版的tensorflow在模型训练时遇到Blas GEMM launch failed错误,或者keras遇到相同错误(keras 一般将tensorflow作为backend,如果安装了GPU版本的tensorflow,那么在使用keras时会优先使用GPU),类似报错如下:

InternalError (see above for traceback): Blas GEMM launch failed : a.shape=(300, 1), b.shape=(1, 10), m=300, n=10, k=1

这是调用GPU时,显存分配遇到了问题,有些解释说当前电脑其他程序占用显存(游戏等),所以发生错误,具体讨论见帖子。比较保险的方式是在模型训练之前为tensorflow或者keras分配显存空间,tensorflow就用如下语句创建session:

gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)  
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))  

而keras就在引入keras时进行参数设置:

import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
config = tf.ConfigProto()
config.gpu_options.allocator_type = 'BFC' #A "Best-fit with coalescing" algorithm, simplified from a version of dlmalloc.
config.gpu_options.per_process_gpu_memory_fraction = 0.3
config.gpu_options.allow_growth = True
set_session(tf.Session(config=config)) 

如果使用ipython notebook,做完上述设置后可能出现GPU sync failed,重启一下就应该没问题了。

你可能感兴趣的:(深度学习,Python,tensorflow,keras)