OpenCV实现车牌识别,OCR分割,ANN神经网络

主要步骤:
准备车牌单个字符图像作为神经网络分类器的训练数据,越多越好。当然需要对每幅图像提取特征,这里使用的是水平和垂直累计直方图和缩小后的图像信息。
获取车牌图像,这里的车牌图像已经完成抠图,并且是灰度图像。
将车牌图像中每个字符分割成单一图像(OCR类实现)。
提取分割出的字符图像特征信息,并使用分类识别字符(OCR类实现)。

 程序运行过程:

              

                             原始带有车牌的图片

                         

                           抠图并输入的车牌图片

                             

                      二值化并分割成单个字符图片

       OpenCV实现车牌识别,OCR分割,ANN神经网络_第1张图片

                                  程序运行结果

代码:

 

#ifndef Plate_h

#define Plate_h


#include 

#include 


#include 

#include 

#include 


using namespace std;

using namespace cv;


//车牌类

class Plate{

public:

Plate();

Plate(Mat img, Rect pos);

string str();

Rect position;//当前车牌在大图的位置,为了把识别出的车牌号显示到原图的车牌位置处

Mat plateImg;//车牌图像,必须是灰度图像

vector chars;

vector charsPos;

};


#endif
#include "stdafx.h"

#include "Plate.h"


Plate::Plate(){

}


Plate::Plate(Mat img, Rect pos){

plateImg=img;

position=pos;

}

//将车牌号码按照间隔长短拼接成字符串

string Plate::str(){

string result="";

//Order numbers

vector orderIndex;

vector xpositions;

for(int i=0; i< charsPos.size(); i++){

orderIndex.push_back(i);

xpositions.push_back(charsPos[i].x);

}

float min=xpositions[0];

int minIdx=0;

for(int i=0; i< xpositions.size(); i++){

min=xpositions[i];

minIdx=i;

for(int j=i; j

 

车牌类代码

 

 
#ifndef OCR_h

#define OCR_h


#include 

#include 


#include "Plate.h"


#include 

#include 

#include 

#include 


using namespace std;

using namespace cv;



#define HORIZONTAL 1

#define VERTICAL 0


class CharSegment{

public:

CharSegment();

CharSegment(Mat i, Rect p);

Mat img;

Rect pos;

};


class OCR{

public:

bool DEBUG;

bool saveSegments;

string filename;

static const int numCharacters;//字符个数

static const char strCharacters[];//字符数组

OCR(string trainFile);

OCR();

string run(Plate *input);//识别车牌

int charSize;

Mat preprocessChar(Mat in);//将字符图片调整为正方形

int classify(Mat f);//根据特征识别出每个字符图片的字符

void train(Mat trainData, Mat trainClasses, int nlayers);//训练分类器

int classifyKnn(Mat f);//扩展的Knn分类器

void trainKnn(Mat trainSamples, Mat trainClasses, int k);

Mat features(Mat input, int size);//提取每幅字符图片的特征


private:

bool trained;

vector segment(Plate input);//分割车片图片

Mat Preprocess(Mat in, int newSize);//缩放为正方形

Mat getVisualHistogram(Mat *hist, int type);//生成视觉直方图

void drawVisualFeatures(Mat character, Mat hhist, Mat vhist, Mat lowData);//绘制视觉直方图

Mat ProjectedHistogram(Mat img, int t);//计算累计直方图

bool verifySizes(Mat r);//判断字符图像大小是否合适

CvANN_MLP ann;//神经网络分类器

CvKNearest knnClassifier;//扩展的k邻域分类器

int K;

};


#endif

  1.  

       

#include "stdafx.h"

#include "OCR.h"


const char OCR::strCharacters[] = {'0','1','2','3','4','5','6','7','8','9','B', 'C', 'D', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'R', 'S', 'T', 'V', 'W', 'X', 'Y', 'Z'};

const int OCR::numCharacters=30;


CharSegment::CharSegment(){}

CharSegment::CharSegment(Mat i, Rect p){

img=i;

pos=p;

}


OCR::OCR(){

DEBUG=false;

trained=false;

saveSegments=false;

charSize=20;

}

OCR::OCR(string trainFile){

DEBUG=false;

trained=false;

saveSegments=false;

charSize=20;


//Read file storage.

FileStorage fs;

fs.open("OCR.xml", FileStorage::READ);

Mat TrainingData;

Mat Classes;

fs["TrainingDataF15"] >> TrainingData;

fs["classes"] >> Classes;


train(TrainingData, Classes, 10);


}

//将单个字符图像变成正方形

Mat OCR::preprocessChar(Mat in){

int h=in.rows;

int w=in.cols;

Mat transformMat=Mat::eye(2,3,CV_32F);//缩放矩阵

int m=max(w,h);

transformMat.at(0,2)=m/2 - w/2;

transformMat.at(1,2)=m/2 - h/2;


Mat warpImage(m,m, in.type());

warpAffine(in, warpImage, transformMat, warpImage.size(), INTER_LINEAR, BORDER_CONSTANT, Scalar(0) );


Mat out;

resize(warpImage, out, Size(charSize, charSize) );


return out;

}


//判断字符图像长宽是否符合要求

bool OCR::verifySizes(Mat r){

//Char sizes 45x77

float aspect=45.0f/77.0f;

float charAspect= (float)r.cols/(float)r.rows;

float error=0.35;

float minHeight=15;

float maxHeight=28;

//We have a different aspect ratio for number 1, and it can be ~0.2

float minAspect=0.2;

float maxAspect=aspect+aspect*error;

//area of pixels

float area=countNonZero(r);

//bb area

float bbArea=r.cols*r.rows;

//% of pixel in area

float percPixels=area/bbArea;


if(DEBUG)

cout << "Aspect: "<< aspect << " ["<< minAspect << "," << maxAspect << "] " << "Area "<< percPixels <<" Char aspect " << charAspect << " Height char "<< r.rows << "\n";

if(percPixels < 0.8 && charAspect > minAspect && charAspect < maxAspect && r.rows >= minHeight && r.rows < maxHeight)

return true;

else

return false;


}


//将车牌图像进一步分割成单个字符图片

vector OCR::segment(Plate plate){

Mat input=plate.plateImg;

vector output;

//将输入图像二值化

Mat img_threshold;

threshold(input, img_threshold, 60, 255, CV_THRESH_BINARY_INV);

if(DEBUG)

imshow("Threshold plate", img_threshold);

Mat img_contours;

img_threshold.copyTo(img_contours);

//查找字符轮廓

vector< vector< Point> > contours;

findContours(img_contours,

contours, // 轮廓

CV_RETR_EXTERNAL, //去除内环

CV_CHAIN_APPROX_NONE); // 轮廓所有像素


//将轮廓绘制到车牌图

cv::Mat result;

img_threshold.copyTo(result);

cvtColor(result, result, CV_GRAY2RGB);

cv::drawContours(result,contours,-1,cv::Scalar(255,0,0),1);


vector >::iterator itc= contours.begin();


//筛选符合条件的闭环

while (itc!=contours.end()) {


//创建一个包围矩形

Rect mr= boundingRect(Mat(*itc));

rectangle(result, mr, Scalar(0,255,0));


Mat auxRoi(img_threshold, mr);

if(verifySizes(auxRoi)){//判断长宽是否满足

auxRoi=preprocessChar(auxRoi);//缩放成正方形

output.push_back(CharSegment(auxRoi, mr));//保存字符图像及位置

rectangle(result, mr, Scalar(0,125,255));

}

++itc;

}

if(DEBUG)

cout << "Num chars: " << output.size() << "\n";

if(DEBUG)

imshow("SEgmented Chars", result);

return output;

}

//计算累计直方图,统计每列或行的非0像素个数

Mat OCR::ProjectedHistogram(Mat img,int t)

{

int sz=(t)?img.rows:img.cols;

Mat mhist=Mat::zeros(1,sz,CV_32F);


for(int j=0; j(j)=countNonZero(data);//

}


//直方图归1化

double min, max;

minMaxLoc(mhist, &min, &max);


if(max>0)

mhist.convertTo(mhist,-1 , 1.0f/max, 0);


return mhist;

}


//得到直方图图像

Mat OCR::getVisualHistogram(Mat *hist, int type)

{


int size=100;

Mat imHist;



if(type==HORIZONTAL){

imHist.create(Size(size,hist->cols), CV_8UC3);

}else{

imHist.create(Size(hist->cols, size), CV_8UC3);

}


imHist=Scalar(55,55,55);


for(int i=0;icols;i++){

float value=hist->at(i);

int maxval=(int)(value*size);


Point pt1;

Point pt2, pt3, pt4;


if(type==HORIZONTAL){

pt1.x=pt3.x=0;

pt2.x=pt4.x=maxval;

pt1.y=pt2.y=i;

pt3.y=pt4.y=i+1;


line(imHist, pt1, pt2, CV_RGB(220,220,220),1,8,0);

line(imHist, pt3, pt4, CV_RGB(34,34,34),1,8,0);


pt3.y=pt4.y=i+2;

line(imHist, pt3, pt4, CV_RGB(44,44,44),1,8,0);

pt3.y=pt4.y=i+3;

line(imHist, pt3, pt4, CV_RGB(50,50,50),1,8,0);

}else{


pt1.x=pt2.x=i;

pt3.x=pt4.x=i+1;

pt1.y=pt3.y=100;

pt2.y=pt4.y=100-maxval;



line(imHist, pt1, pt2, CV_RGB(220,220,220),1,8,0);

line(imHist, pt3, pt4, CV_RGB(34,34,34),1,8,0);


pt3.x=pt4.x=i+2;

line(imHist, pt3, pt4, CV_RGB(44,44,44),1,8,0);

pt3.x=pt4.x=i+3;

line(imHist, pt3, pt4, CV_RGB(50,50,50),1,8,0);

}

}

return imHist ;

}


void OCR::drawVisualFeatures(Mat character, Mat hhist, Mat vhist, Mat lowData){

Mat img(121, 121, CV_8UC3, Scalar(0,0,0));

Mat ch;

Mat ld;


cvtColor(character, ch, CV_GRAY2RGB);


resize(lowData, ld, Size(100, 100), 0, 0, INTER_NEAREST );

cvtColor(ld,ld,CV_GRAY2RGB);


Mat hh=getVisualHistogram(&hhist, HORIZONTAL);

Mat hv=getVisualHistogram(&vhist, VERTICAL);


Mat subImg=img(Rect(0,101,20,20));

ch.copyTo(subImg);


subImg=img(Rect(21,101,100,20));

hh.copyTo(subImg);


subImg=img(Rect(0,0,20,100));

hv.copyTo(subImg);


subImg=img(Rect(21,0,100,100));

ld.copyTo(subImg);


line(img, Point(0,100), Point(121,100), Scalar(0,0,255));

line(img, Point(20,0), Point(20,121), Scalar(0,0,255));


imshow("Visual Features", img);


cvWaitKey(0);

}


Mat OCR::features(Mat in, int sizeData){

//分别获取垂直和水平直方图信息

Mat vhist=ProjectedHistogram(in,VERTICAL);

Mat hhist=ProjectedHistogram(in,HORIZONTAL);


//低分辨率图像

Mat lowData;

resize(in, lowData, Size(sizeData, sizeData) );//15x15


if(DEBUG)

drawVisualFeatures(in, hhist, vhist, lowData);


//整合低分辨路图像信息和直方图统计信息,

int numCols=vhist.cols+hhist.cols+lowData.cols*lowData.cols;


Mat out=Mat::zeros(1,numCols,CV_32F);

//保存特征信息

int j=0;

for(int i=0; i(j)=vhist.at(i);

j++;

}

for(int i=0; i(j)=hhist.at(i);

j++;

}

for(int x=0; x(j)=(float)lowData.at(x,y);

j++;

}

}

if(DEBUG)

cout << out << "\n===========================================\n";

return out;

}


//训练 //训练样本数据//每条数据对应的字母下标//深度

void OCR::train(Mat TrainData, Mat classes, int nlayers){

Mat layers(1,3,CV_32SC1);

layers.at(0)= TrainData.cols;//每个样本宽度

layers.at(1)= nlayers;//深度

layers.at(2)= numCharacters;//结果个数

ann.create(layers, CvANN_MLP::SIGMOID_SYM, 1, 1);


Mat trainClasses;

trainClasses.create( TrainData.rows, numCharacters, CV_32FC1 );//每一条样本都对应着numCharacters个可能结果,但是只有一个结果是正确的,

for( int i = 0; i < trainClasses.rows; i++ )

{

for( int k = 0; k < trainClasses.cols; k++ )

{

//将该条训练数据对应的字符下标位置赋值为1,其他赋值为0

if( k == classes.at(i) )

trainClasses.at(i,k) = 1;

else

trainClasses.at(i,k) = 0;

}

}

Mat weights( 1, TrainData.rows, CV_32FC1, Scalar::all(1) );

//开始训练学习

ann.train( TrainData, trainClasses, weights );

trained=true;

}

//识别字符

int OCR::classify(Mat f){

int result=-1;

Mat output(1, numCharacters, CV_32FC1);

ann.predict(f, output);

Point maxLoc;

double maxVal;

minMaxLoc(output, 0, &maxVal, 0, &maxLoc);//求最大值以及下标位置,这里没有打印出来最大值

return maxLoc.x;

}


int OCR::classifyKnn(Mat f){

int response = (int)knnClassifier.find_nearest( f, K );

return response;

}

void OCR::trainKnn(Mat trainSamples, Mat trainClasses, int k){

K=k;

// learn classifier

knnClassifier.train( trainSamples, trainClasses, Mat(), false, K );

}


string OCR::run(Plate *input){


//分割车牌中每个字符

vector segments=segment(*input);


for(int i=0; ichars.push_back(strCharacters[character]);

input->charsPos.push_back(segments[i].pos);

}

return "-";//input->str();

}

                                                         

OCR类代码

 

#include "stdafx.h"

#include 

#include 

#include 

#include 


#include 

#include 


#include "DetectRegions.h"

#include "OCR.h"


using namespace std;

using namespace cv;


string getFilename(string s) {


char sep = '/';

char sepExt = '.';


#ifdef _WIN32

sep = '\\';

#endif


size_t i = s.rfind(sep, s.length());

if (i != string::npos) {

string fn = (s.substr(i + 1, s.length() - i));

size_t j = fn.rfind(sepExt, fn.length());

if (i != string::npos) {

return fn.substr(0, j);

}

else{

return fn;

}

}

else{

return "";

}

}


int main(int argc, char** argv)

{

char* filename;

Mat input_image;//必须为灰度图像


//有输入图片才继续

if (argc >= 2)

{

filename = argv[1];

input_image = imread(filename, 1);

}

else{

printf("Use:\n\t%s image\n", argv[0]);

return 0;

}


string filename_whithoutExt = getFilename(filename);//得到去除后缀部分

OCR ocr("OCR.xml");//参数为保存了自己训练数据的xml文件

ocr.saveSegments = true;

ocr.DEBUG = true;

ocr.filename = filename_whithoutExt;

Plate plate;

plate.plateImg = input_image;

plate.position = Rect(50, 100, input_image.cols, input_image.rows);//车牌是从大图中抠图出来的,这里说明车牌的位置和大小

imwrite("plateImg.jpg", plate.plateImg);

string plateNumber = ocr.run(&plate);

string licensePlate = plate.str();

cout << "================================================\n";

cout << "License plate number: " << licensePlate << "\n";

cout << "================================================\n";

rectangle(input_image, plate.position, Scalar(0, 0, 200));

putText(input_image, licensePlate, Point(plate.position.x, plate.position.y), CV_FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 0, 200), 2);

if (false){

imshow("Plate Detected seg", plate.plateImg);

cvWaitKey(0);

}


imshow("Plate Detected", input_image);

for (;;)

{

int c;

c = cvWaitKey(10);

if ((char)c == 27)

break;

}

return 0;

}

 

 main函数代码

有关ANN神经网络分类器的原理及训练请参考我的另一篇文章:http://blog.csdn.net/xukaiwen_2016/article/details/53293465

最后:例子中没有实现对中文的识别,其实原理都是一样的,大家可以自己寻找中文车牌的图片进行分类器训练即可,代码几乎不用修改。

需要代码以及分类器训练数据xml文件的话,评论留下邮箱。

================================================================================================

 

转自:https://blog.csdn.net/xukaiwen_2016/article/details/53525988

你可能感兴趣的:(计算机视觉,opencv)