使用logistic回归和神经网络进行手写数字的识别分类(0-9)
ex3.m - Octave/MATLAB 第一部分练习
ex3 nn.m - Octave/MATLAB 第二部分练习
ex3data1.mat - 手写数字的训练集
ex3weights.mat - 神经网络的初始quan'z
displayData.m - 数据可视化的函数
fmincg.m - 求解函数最优解的函数(类比fminunc)
lrCostFunction.m - Logistic 回归的损失函数
oneVsAll.m - 训练一对多的分类器
predictOneVsAll.m - 预测一对多的分类
predict.m - 神经网络的预测函数
使用logistic回归进行实现one-vs-all的分类:
训练集为5000个样本,每个样本有20pixel×20pixel共400个特征的图像信息
假设函数:
损失函数:
梯度:
正则化后的损失函数:
正则化后的梯度:
function [J, grad] = lrCostFunction(theta, X, y, lambda)
%LRCOSTFUNCTION Compute cost and gradient for logistic regression with
%regularization
% J = LRCOSTFUNCTION(theta, X, y, lambda) computes the cost of using
% theta as the parameter for regularized logistic regression and the
% gradient of the cost w.r.t. to the parameters.% Initialize some useful values
m = length(y); % number of training examples% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
%
% Hint: The computation of the cost function and gradients can be
% efficiently vectorized. For example, consider the computation
%
% sigmoid(X * theta)
%
% Each row of the resulting matrix will contain the value of the
% prediction for that example. You can make use of this to vectorize
% the cost function and gradient computations.
%
% Hint: When computing the gradient of the regularized cost function,
% there're many possible vectorized solutions, but one solution
% looks like:
% grad = (unregularized gradient for logistic regression)
% temp = theta;
% temp(1) = 0; % because we don't add anything for j = 0
% grad = grad + YOUR_CODE_HERE (using the temp variable)
%
%%
z = X * theta;
h = sigmoid(z); % 列向量m*1
J = ((y'*log(h))+(1-y')*log(1-h)) / (-m) + lambda*ones(size(theta'))*power(theta,2)/(2*m);grad1 = ((h-y)'*X(:,1)) / m;
grad_other = ((h-y)'*X(:,2:end)) / m + lambda/m*theta(2:end)';
grad = [grad1 grad_other];
% =============================================================grad = grad(:);
end
在第一次编写的时候出现了几个问题:
function [all_theta] = oneVsAll(X, y, num_labels, lambda)
%ONEVSALL trains multiple logistic regression classifiers and returns all
%the classifiers in a matrix all_theta, where the i-th row of all_theta
%corresponds to the classifier for label i
% [all_theta] = ONEVSALL(X, y, num_labels, lambda) trains num_labels
% logistic regression classifiers and returns each of these classifiers
% in a matrix all_theta, where the i-th row of all_theta corresponds
% to the classifier for label i% Some useful variables
m = size(X, 1);
n = size(X, 2);% You need to return the following variables correctly
all_theta = zeros(num_labels, n + 1);% Add ones to the X data matrix
X = [ones(m, 1) X];% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the following code to train num_labels
% logistic regression classifiers with regularization
% parameter lambda.
%
% Hint: theta(:) will return a column vector.
%
% Hint: You can use y == c to obtain a vector of 1's and 0's that tell you
% whether the ground truth is true/false for this class.
%
% Note: For this assignment, we recommend using fmincg to optimize the cost
% function. It is okay to use a for-loop (for c = 1:num_labels) to
% loop over the different classes.
%
% fmincg works similarly to fminunc, but is more efficient when we
% are dealing with large number of parameters.
%
% Example Code for fmincg:
%
% % Set Initial theta
% initial_theta = zeros(n + 1, 1);
%
% % Set options for fminunc
% options = optimset('GradObj', 'on', 'MaxIter', 50);
%
% % Run fmincg to obtain the optimal theta
% % This function will return theta and the cost
% [theta] = ...
% fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), ...
% initial_theta, options);
%
%%
options = optimset('GradObj', 'on', 'MaxIter', 50);for iclass = 1:num_labels
initial_theta = zeros(n+1, 1);
[theta] = ...
fmincg (@(t)(lrCostFunction(t, X, (y == iclass), lambda)), ...
initial_theta, options);
all_theta(iclass,:) = theta;
end
% =========================================================================
end
第一次的时候把事情想复杂了,想着先把训练集进行切片,然后分别训练模型,进行fmincg求最优化,得到每一种分类的theta,这种思路太过于复杂。
直接将y进行判断后传入lrCostFunction函数,然后将X的所有值传入即可,最后可得十种类别的401个特征的参数,然后可进行拟合函数,进而实行下一个测试集的判断
通过上一个函数得到十种类别下的各种特征的参数,即一个10×401维数的矩阵
function p = predictOneVsAll(all_theta, X)
%PREDICT Predict the label for a trained one-vs-all classifier. The labels
%are in the range 1..K, where K = size(all_theta, 1).
% p = PREDICTONEVSALL(all_theta, X) will return a vector of predictions
% for each example in the matrix X. Note that X contains the examples in
% rows. all_theta is a matrix where the i-th row is a trained logistic
% regression theta vector for the i-th class. You should set p to a vector
% of values from 1..K (e.g., p = [1; 3; 1; 2] predicts classes 1, 3, 1, 2
% for 4 examples)m = size(X, 1);
num_labels = size(all_theta, 1);% You need to return the following variables correctly
p = zeros(size(X, 1), 1);% Add ones to the X data matrix
X = [ones(m, 1) X];% ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
% your learned logistic regression parameters (one-vs-all).
% You should set p to a vector of predictions (from 1 to
% num_labels).
%
% Hint: This code can be done all vectorized using the max function.
% In particular, the max function can also return the index of the
% max element, for more information see 'help max'. If your examples
% are in rows, then, you can use max(A, [], 2) to obtain the max
% for each row.
%
acc = X * all_theta';
[valu p] = max(acc, [], 2);
% =========================================================================
end
得到训练集的数据重新作为测试集来测试刚刚拟合的模型的准确率。
因为logistic回归只是一个线性分类器,所以不能得出较为复杂的假设函数,进而提出神经网络
神经网络适用于输入特征过于庞大的时候
function p = predict(Theta1, Theta2, X)
%PREDICT Predict the label of an input given a trained neural network
% p = PREDICT(Theta1, Theta2, X) outputs the predicted label of X given the
% trained weights of a neural network (Theta1, Theta2)% Useful values
m = size(X, 1);
num_labels = size(Theta2, 1);
X = [ones(size(X,1),1) X];
% You need to return the following variables correctly
p = zeros(size(X, 1), 1);% ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
% your learned neural network. You should set p to a
% vector containing labels between 1 to num_labels.
%
% Hint: The max function might come in useful. In particular, the max
% function can also return the index of the max element, for more
% information see 'help max'. If your examples are in rows, then, you
% can use max(A, [], 2) to obtain the max for each row.
%
z2 = Theta1 * X';
a2_t = sigmoid(z2);
a2 = [ones(1,size(a2_t,2));a2_t];
z3 = Theta2 * a2;
h = sigmoid(z3');
[val, p] = max(h, [], 2);% =========================================================================
end