- 云服务业界动态简报-20180128
Captain7
一、青云青云QingCloud推出深度学习平台DeepLearningonQingCloud,包含了主流的深度学习框架及数据科学工具包,通过QingCloudAppCenter一键部署交付,可以让算法工程师和数据科学家快速构建深度学习开发环境,将更多的精力放在模型和算法调优。二、腾讯云1.腾讯云正式发布腾讯专有云TCE(TencentCloudEnterprise)矩阵,涵盖企业版、大数据版、AI
- 机器学习VS深度学习
nfgo
机器学习
机器学习(MachineLearning,ML)和深度学习(DeepLearning,DL)是人工智能(AI)的两个子领域,它们有许多相似之处,但在技术实现和应用范围上也有显著区别。下面从几个方面对两者进行区分:1.概念层面机器学习:是让计算机通过算法从数据中自动学习和改进的技术。它依赖于手动设计的特征和数学模型来进行学习,常用的模型有决策树、支持向量机、线性回归等。深度学习:是机器学习的一个子领
- linux查看jupyter运行,在Linux服务器上运行Jupyter notebook server教程
天启大烁哥
在Linux服务器上运行Jupyternotebookserver教程很多deeplearning教程都推荐在jupyternotebook运行python代码,方便及时交互。但只在本地运行没有GPU环境,虽然googlecolab是个好办法,但发现保存模型后在云端找不到模型文件,且需要合理上网才能访问。于是想给实验室的服务器配置jupyternotebook,供本机远程访问。踩了不少坑,码一下教
- 使用matlab的热门问题
七十二五
值得关注matlab开发语言青少年编程算法经验分享
MATLAB广泛应用于科学计算、数据分析、信号处理、图像处理、机器学习等多个领域,因此热门问题也涵盖了这些方面。以下是一些可能被认为当前最热门的MATLAB问题:深度学习与神经网络:如何使用MATLAB的深度学习工具箱(DeepLearningToolbox)来构建和训练神经网络?如何利用MATLAB进行图像识别、语音识别或自然语言处理等深度学习应用?数据分析与可视化:如何使用MATLAB进行大数
- COI实验室技能:图像到图像的深度学习开发框架(pytorch版)
山颠海涯
深度学习pytorch人工智能
Basicdeeplearningframeworkforimage-to-image这个开发框架旨在帮助科研人员快速地实现图像到图像之间的模型开发。github连接:https://github.com/SituLab/Basic-deep-learning-framework-for-image-to-image目录1模型开发1-1克隆项目到本地1-2深度学习开发2环境配置2-1安装conda
- Python深度学习-环境
cunzai1985
tensorflowpython深度学习人工智能anaconda
Python深度学习-环境(PythonDeepLearning-Environment)Inthischapter,wewilllearnabouttheenvironmentsetupforPythonDeepLearning.Wehavetoinstallthefollowingsoftwareformakingdeeplearningalgorithms.在本章中,我们将学习为Python
- 深度学习-OpenCV运用(3)
红米煮粥
深度学习opencv人工智能
文章目录一、简介二、OpenCV运用1.图片扩充2.图像阈值处理3.添加椒盐噪声三、总结一、简介深度学习(DeepLearning)与OpenCV(OpenSourceComputerVisionLibrary)的结合为计算机视觉领域带来了强大的解决方案。OpenCV是一个开源的计算机视觉和机器学习软件库,它提供了大量的视觉处理算法,包括但不限于图像和视频处理、特征检测、对象识别等。二、OpenC
- 【论文阅读】Purloining Deep Learning Models Developed for an Ultrasound Scanner to a Competitor Machine
Bosenya12
科研学习模型窃取论文阅读深度学习人工智能模型安全
TheArtoftheSteal:PurloiningDeepLearningModelsDevelopedforanUltrasoundScannertoaCompetitorMachine(2024)摘要Atransferfunctionapproach(传递函数方法)hasrecentlyproveneffectiveforcalibratingdeeplearning(DL)algorit
- 【论文阅读】QUEEN: Query Unlearning against Model Extraction(2024)
Bosenya12
科研学习模型窃取论文阅读提取攻击模型安全
摘要Modelextractionattacks(模型提取攻击)currentlyposeanon-negligiblethreat(不可忽视的威胁)tothesecurity(安全性)andprivacy(隐私性)ofdeeplearningmodels.Byqueryingthemodelwithasmalldataset(通过小数据集查询模型)andusingthequeryresultsa
- 【论文阅读33】Deep learning optoacoustic tomography with sparse data
弹伦琴的雷登
【论文阅读系列】人工智能深度学习论文阅读图像处理
Deeplearningoptoacoustictomographywithsparsedata论文题目:基于稀疏数据的深度学习光声断层扫描论文链接:Deeplearningoptoacoustictomographywithsparsedata|NatureMachineIntelligence代码链接:GitHub-ndavoudi/sparse_artefact_unet数据链接:Data发
- python里的i_Python 中[::] 与 [:,:,i] 总结
桌游顽主的航仔
python里的i
最近在学吴恩达的DeepLearning中的第五门课SequenceModel,第一个lab是用Numpy搭建RNN,在搭建RNN的时候用到了Numpy的Slicing([:,:,i]),在这里想总结下[:,:,i]与[::i]的用法,有写的不对的地方请随时指教。总的来说,[::i]是Python中的基础索引,而[:,:,i]是Numpy中对于多维度Array的提取,在StackOverflow中
- 智能合约漏洞检测论文
weixin_45332030
智能合约
综述TestingEthereumSmartContracts:AComparisonofSymbolicAnalysisandFuzzTestingTools符号执行与模糊测试工具的比较综述DeepLearningBasedVulnerabilityDetection:AreWeThereYet?基于深度学习的漏洞检测研究https://github.com/VulDetProject/ReVe
- 机器学习概述与应用:深度学习、人工智能与经典学习方法
刷刷刷粉刷匠
人工智能机器学习深度学习
引言机器学习(MachineLearning)是人工智能(AI)领域中最为核心的分支之一,其主要目的是通过数据学习和构建模型,帮助计算机系统自动完成特定任务。随着深度学习(DeepLearning)的崛起,机器学习技术在各行各业中的应用变得越来越广泛。在本文中,我们将详细介绍机器学习的基础概念,包括无监督学习、有监督学习、增量学习,以及常见的回归和分类问题,并结合实际代码示例来加深理解。1.机器学
- 【现学现卖】CHEER中的概念解释——k-mer
番茄随笔
“概念理解”CHEER:HierarCHicaltaxonomicclassificationforviralmEtagEnomicdataviadeepleaRning对这篇文章中概念的理解:【现学现卖】CHEER与病毒宏基因组数据分析(1)【现学现卖】CHEER与病毒宏基因组数据分析(2)k-mer单独的k-mer很好理解,就是从一段序列中迭代分割提取长度为k的几个子序列(一般k为奇数,使用例
- Learning Deep Learning(学习深度学习)
weixin_34056162
开发工具人工智能python
作者:chen_h微信号&QQ:862251340微信公众号:coderpai简书地址:https://www.jianshu.com/p/e98...LearningDeepLearning(学习深度学习)TherearelotsofawesomereadinglistsorpoststhatsummarizedmaterialsrelatedtoDeepLearning.SowhywouldI
- 【论文阅读】APMSA: Adversarial Perturbation Against Model Stealing Attacks(2023)
Bosenya12
科研学习模型窃取论文阅读模型窃取防御对抗性扰动
摘要TrainingaDeepLearning(DL)model(训练深度学习模型)requiresproprietarydata(专有数据)andcomputing-intensiveresources(计算密集型资源).Torecouptheirtrainingcosts(收回训练成本),amodelprovidercanmonetizeDLmodelsthroughMachineLearni
- DeePhage:预测噬菌体的生活方式
CAAS_IFR_zp
生活
GitHub-shufangwu/DeePhage:Atoolfordistinguishtemperatephage-derivedandvirulentphage-derivedsequenceinmetaviromedatausingdeeplearning安装condacreate-ndeephagecondaactivatedeephagepipinstallnumpypipinstal
- 机器学习、深度学习、神经网络之间的关系
你好,工程师
AI机器学习
机器学习(MachineLearning)、深度学习(DeepLearning)和神经网络(NeuralNetworks)之间存在密切的关系,它们可以被看作是一种逐层递进的关系。下面简要介绍它们之间的关系:机器学习(MachineLearning):机器学习是一种人工智能的分支,关注如何通过数据让计算机系统从经验中学习,提高性能。机器学习算法可以分为监督学习、无监督学习、半监督学习和强化学习等不同
- 认识小波-DWT CWT Scattering
闪闪发亮的小星星
数字信号处理与分析计算机视觉人工智能信号处理
这里写自定义目录标题小波变换的种类连续小波变换(CWT)DWTANexampleapplicationofDWTANexampleofCWT5.MachineLearningandDeepLearningwithWaveletScattering小波散射网络大家好。在本次介绍性课程中,我将介绍一些基本的小波概念。我将主要使用一维示例,但相同的概念也可以应用于图像。首先,我们回顾一下什么是小波。现实
- Mastering Convolutional Neural Networks: A Comprehensive Practical Exploration
Bio大恐龙
人工智能深度学习数据可视化机器学习
ConvolutionalNeuralNetworks(CNNs)haverevolutionizedthefieldofcomputervisionandimagerecognition,enablinggroundbreakingadvancementsinvariousdomains.Thesepowerfuldeeplearningmodelshaveproventheirprowessi
- 精读《深度学习 - 函数式之美》
可口可乐Vip
前端深度学习人工智能
1引言函数式语言在深度学习领域应用很广泛,因为函数式与深度学习模型的契合度很高,TheBeautyofFunctionalLanguagesinDeepLearning — ClojureandHaskell就很好的诠释了这个道理。通过这篇文章可以加深我们对深度学习与函数式编程的理解。2概述与精读深度学习是机器学习中基于人工神经网络模型的一个分支,通过模拟多层神经元的自编码神经网络,将特征逐步抽象
- 苹果手机怎么学python_我是如何在 Python 内使用深度学习实现 iPhone X 的 FaceID 的...
weixin_39693437
苹果手机怎么学python
雷锋网按:本文为AI研习社编译的技术博客,原标题HowIimplementediPhoneX'sFaceIDusingDeepLearninginPython,作者为SHIVAMBANSAL。翻译|陶玉龙余杭校对|Lamaric整理|MY在最近推出的iPhoneX中,它被讨论最多的特点之一是它采用了新的解锁方法,即TouchID:FaceID。在研发出无边框手机后,苹果公司想开发一种新的方法来快捷
- 解决conda环境下import TensorFlow失败的问题
绿竹巷人
功能安装condatensorflow人工智能
问题描述安装了anaconda的电脑,新建了一个名叫deeplearning的环境,在该环境下已经成功安装了tensorflow。于是在终端打开python并执行代码importtensorflowastfprint(1)除了提示2024-02-2721:50:00.801427:Iexternal/local_tsl/tsl/cuda/cudart_stub.cc:31]Couldnotfind
- Deep Learning with OpenCV DNN Module介绍
lida2003
Linux深度学习opencvdnn计算机视觉人工智能
DeepLearningwithOpenCVDNNModule介绍1.源由2.为什么/什么是OpenCVDNNModule?2.1支持的不同深度学习功能2.2支持的不同模型2.3支持的不同框架3.如何使用OpenCVDNN模块3.1使用从Keras和PyTorch等不同框架转换为ONNX格式的模型3.2使用OpenCVDNN模块的基本步骤4.参考资料1.源由看了一些资料和数据,感觉他讲的非常好,也
- 文献阅读(42)——使用深度学习在眼底照中检测糖网并分类(综述)
柚子味的羊
文献阅读深度学习分类人工智能
使用深度学习在眼底照中检测糖网并分类(综述)Deeplearningfordiabeticretinopathydetectionandclassificationbasedonfundusimages:AreviewIF=6.698/Q1文章目录使用深度学习在眼底照中检测糖网并分类(综述)先验知识/知识拓展文章结构文章结果1.introduction方法1.眼底图像一般的分析pipeline2.
- 深度学习——概念引入
韶光流年都束之高阁
深度学习日记深度学习人工智能职场和发展
深度学习深度学习简介深度学习分类根据网络结构划分:循环神经网络卷积神经网络根据学习方式划分:监督学习无监督学习半监督学习根据应用领域划分:计算机视觉自然语言处理语音识别生物信息学深度学习简介深度学习(DeepLearning,DL)是机器学习领域中的一个新的研究方向,主要是通过学习样本数据的内在规律和表示层次,让机器能够具有类似于人类的分析学习能力。深度学习的最终目标是让机器能够识别和解释各种数据
- ChatGPT魔法1: 背后的原理
王丰博
GPTchatgpt
1.AI的三个阶段1)上世纪50~60年代,计算机刚刚产生2)Machinelearning3)Deeplearning,有神经网络,最有代表性的是ChatGPT,GPT(GenerativePre-TrainedTransformer)2.深度神经网络llyaSutskever:做图像识别,使用了GPT去并行计算及训练。Alexnet数据库已经label好的(李飞飞)GPU算力3.GPT3.1T
- 中科院一区论文复现,改进蜣螂算法,Fuch映射+反向学习+自适应步长+随机差分变异,MATLAB代码...
今天吃饺子
算法学习matlab开发语言
本期文章复现一篇发表于2024年来自中科院一区TOP顶刊《Energy》的改进蜣螂算法。论文引用如下:LiY,SunK,YaoQ,etal.Adual-optimizationwindspeedforecastingmodelbasedondeeplearningandimproveddungbeetleoptimizationalgorithm[J].Energy,2024,286:129604
- 速读-张量流处理器(TSP)
Reacubeth
徐奕的专栏机器学习人工智能体系结构深度学习
Paper:Abts,Dennis,etal.“Thinkfast:atensorstreamingprocessor(TSP)foracceleratingdeeplearningworkloads.”2020ACM/IEEE47thAnnualInternationalSymposiumonComputerArchitecture(ISCA).IEEE,2020.简介本文介绍了一种名为张量流处
- 如何在6个月内学习深度学习(翻译)
三猫后端
原文链接:如何在6个月内学习深度学习(翻译)微信公众号:机器学习养成记搜索添加微信公众号:chenchenwings机器学习工程师Bargava的文章《HowtolearnDeepLearningin6months》介绍了6个月内学习并掌握深度学习的实现步骤,每个步骤列出了相应的学习材料和学习目标。本周公众号内容为原文的部分内容翻译。准备6个月内,每周将花费10-20小时。需要一些编程基础。这样便
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息