随机过程_马尔科夫过程_马尔科夫链

一、什么是随机过程(摘自维基百科)

在概率论概念中,随机过程是随机变量的集合。若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。实际应用中,样本函数的一般定义在时间域或者空间域。随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,随机运动如布朗运动、随机徘徊等等。

(\Omega, \mathcal{F}, P)为一概率空间,另设集合T为一指标集合。如果对于所有t\in T,均有一随机变量\xi_t(\omega)定义于概率空间(\Omega, \mathcal{F}, P),则集合\{\xi_t(\omega)|t\in T\}为一随机过程。

通常,指标集合T代表时间,以实数或整数表示。以实数形式表示时,随机过程称为连续随机过程;以整数表示时,则为离散随机过程。随机过程中的参数\omega只为分辨同类随机过程中的不同实例,如上文下理不构成误会,通常略去。例如表达单次元布朗运动时,常以W_t表达,但若考虑两同时进行布朗运动的粒子,则会分别以W_t(1)W_t(2)(或作W_1(t)W_2(t))表示。

二、什么是马尔科夫过程及马尔科夫链(摘自智库百科)

1、马尔可夫性(无后效性)

  过程或(系统)在时刻t0所处的状态为已知的条件下,过程在时刻t >t0所处状态的条件分布,与过程在时刻t0之前年处的状态无关的特性称为马尔可夫性或无后效性。

  即:过程“将来”的情况与“过去”的情况是无关的。

  2、马尔可夫过程的定义

  具有马尔可夫性的随机过程称为马尔可夫过程。

  用分布函数表述马尔可夫过程:

  设I:随机过程{X(t),t\in T}的状态空间,如果对时间t的任意n个数值:

  P{X(t_n)\le x_n|X(t_1)=x_1,X(t_2)=x_2,\cdots ,X(t_{n-1})=x_{n-1}}(注:X(tn)在条件X(ti) = xi下的条件分布函数)

  =P{X(t_n\le x_n|X(t_{n-1})=x_{n-1}},x_n\in R(注:X(tn))在条件X(tn − 1) = xn − 1下的条件分布函数)

  或写成:

  F_{t_n|t_1\cdots t_{n-1}}(x_n,t_n|x_1,x_2,\cdots,x_{n-1};t_1,t_2,\cdots,t_{n-1})

  F_{t_n|t_{n-1}}(x_n,t_n|x_{n-1},t_{n-1})

  这时称过程X(t),t\in T具马尔可夫性或无后性,并称此过程为马尔可夫过程。

  3、马尔可夫链的定义

  时间和状态都是离散的马尔可夫过程称为马尔可夫链, 简记为{X_n=X(n),n=0,1,2,\cdots}。 

    一个马尔可夫链,若从u时刻处于状态i,转移到tu时刻处于状态j的转移概率与转移的起始时间u无关,则称之为齐次马尔可夫链,简称齐次马氏链。


你可能感兴趣的:(随机过程_马尔科夫过程_马尔科夫链)