- 在Hadoop集群中实现数据安全:技术与策略并行
Echo_Wish
实战高阶大数据hadoop大数据分布式
在Hadoop集群中实现数据安全:技术与策略并行随着大数据技术的广泛应用,Hadoop已经成为处理和存储海量数据的首选平台。然而,随着数据规模的扩大,如何确保Hadoop集群中的数据安全也成为了亟待解决的难题。毕竟,数据安全不仅关系到企业的隐私保护,也直接影响到数据的可信度与可用性。本文将探讨如何在Hadoop集群中实现数据安全,分析数据加密、访问控制、审计日志等方面的技术与策略,并通过一些具体的
- python编写mapreduce job教程
weixin_49526058
pythonmapreducehadoop
在Python中实现MapReduce作业,通常可以使用mrjob库,这是一个用于编写和执行MapReduce作业的Python库。它可以运行在本地模式或Hadoop集群上。以下是一个简单的MapReduce示例,它计算文本文件中每个单词的出现次数。安装mrjob首先,你需要安装mrjob库。可以通过pip安装:pipinstallmrjobMapReduce示例:计算单词频率1.创建一个MapR
- Knox原理与代码实例讲解
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Knox原理与代码实例讲解1.背景介绍在现代分布式系统中,安全性和隔离性是非常重要的需求。ApacheKnox是一个反向代理服务器,旨在为ApacheHadoop集群提供单一入口点,增强安全性和集中化管理。它位于Hadoop集群与客户端应用程序之间,充当网关和负载均衡器的角色。Knox的主要目标是:提供集中式身份验证和授权,减轻客户端应用程序的负担。实现多租户支持,允许不同的组织或部门安全地共享同
- HBase基本技巧:掌握高效数据管理的秘诀
狮歌~资深攻城狮
javaandroid数据库
HBase基本技巧:掌握高效数据管理的秘诀嘿,小伙伴们!现在你已经对HBase有了初步的了解,接下来让我们深入探讨一些HBase的基本技巧。这些技巧不仅能帮助你更高效地管理和操作数据,还能让你在面对复杂场景时游刃有余。1.行键设计的艺术什么是行键?行键(RowKey)是HBase表中每一行的唯一标识符。它的设计直接影响到查询性能和数据分布。因此,合理设计行键是非常重要的。设计原则•避免热点问题:如
- 【动态路由】系统Web URL资源整合系列(后端技术实现)【apisix实现】
飞火流星02027
URL整合apisix反向代理apisix网关apisix实现web资源整合系统URL资源整合apisix基于请求参数的路由apisix基于请求头的路由APISIXDashboard
需求说明软件功能需求:反向代理功能(描述:apollo、eureka控、apisix、sentinel、普米、kibana、timetask、grafana、hbase、skywalking-ui、pinpoint、cmak界面、kafka-map、nacos、gateway、elasticsearch、oa-portal业务应用等多个web资源等只能通过有限个代理地址访问),不考虑SSO。软件质
- Apache ZooKeeper 分布式协调服务
slovess
分布式apachezookeeper
1.ZooKeeper概述1.1定义与定位核心定位:分布式系统的协调服务,提供强一致性的配置管理、命名服务、分布式锁和集群管理能力核心模型:基于树形节点(ZNode)的键值存储,支持Watcher监听机制生态地位:Hadoop/Kafka等生态核心依赖,分布式系统基础设施级组件1.2设计目标强一致性:所有节点数据最终一致(基于ZAB协议)高可用性:集群半数以上节点存活即可提供服务顺序性:全局唯一递
- Hadoop常用端口号
海洋 之心
Hadoop问题解决hadoophbase大数据
Hadoop是一个由多个组件构成的分布式系统,每个组件都会使用一些特定的端口号来进行通信和交互。以下是Hadoop2.x常用的端口号列表:HDFS端口号:NameNode:50070SecondaryNameNode:50090DataNode:50010DataNode(数据传输):50020YARN端口号:ResourceManager:8088NodeManager:8042MapReduc
- Hadoop综合项目——二手房统计分析(可视化篇)
WHYBIGDATA
大数据项目hadoop大数据
Hadoop综合项目——二手房统计分析(可视化篇)文章目录Hadoop综合项目——二手房统计分析(可视化篇)0、写在前面1、数据可视化1.1二手房四大一线城市总价Top51.2统计各个楼龄段的二手房比例1.3统计各个城市二手房标签的各类比例1.4统计各个城市各个楼层的平均价格1.5统计各个城市二手房优势的各类比例1.6统计各个城市二手房数量和关注人数的关系1.7统计各个城市二手房规格的各类比例1.
- 大数据之-hdfs+hive+hbase+kudu+presto集群(6节点)
管哥的运维私房菜
大数据hdfshivekuduprestohbase
几个主要软件的下载地址:prestohttps://prestosql.io/docs/current/index.htmlkudurpm包地址https://github.com/MartinWeindel/kudu-rpm/releaseshivehttp://mirror.bit.edu.cn/apache/hive/hdfshttp://archive.apache.org/dist/ha
- hbase快照同步到目标集群出现ERROR Multiple regions have the same startkey问题分析
spring208208
hbasehbasepython前端
问题现象源集群表split/merge过程中创建快照,该快照同步到目标集群,目标集群恢复快照后,进行hbck检查,就会出现异常报错:ERRORMultipleregionshavethesamestartkey;问题分析首先,出现上述问题可能有如下两种原因:源集群中snapshot表本身就存在这种问题,没有修复就执行snapshot,导出快照到目标集群,然后恢复表也会存在这种问题。在执行split
- spark任务运行
冰火同学
Sparkspark大数据分布式
运行环境在这里插入代码片[root@hadoop000conf]#java-versionjavaversion"1.8.0_144"Java(TM)SERuntimeEnvironment(build1.8.0_144-b01)[root@hadoop000conf]#echo$JAVA_HOME/home/hadoop/app/jdk1.8.0_144[root@hadoop000conf]#
- Hadoop 的分布式缓存机制是如何实现的?如何在大规模集群中优化缓存性能?
晚夜微雨问海棠呀
分布式hadoop缓存
Hadoop的分布式缓存机制是一种用于在MapReduce任务中高效分发和访问文件的机制。通过分布式缓存,用户可以将小文件(如配置文件、字典文件等)分发到各个计算节点,从而提高任务的执行效率。分布式缓存的工作原理文件上传:用户将需要缓存的文件上传到HDFS(HadoopDistributedFileSystem)。文件路径可以在作业配置中指定。作业提交:在提交MapReduce作业时,用户可以通过
- 集群与分片:深入理解及应用实践
一休哥助手
架构系统架构
目录引言什么是集群?集群的定义集群的类型什么是分片?分片的定义分片的类型集群与分片的关系集群的应用场景负载均衡高可用性分片的应用场景大数据处理数据库分片集群与分片的架构设计系统架构设计数据存储设计案例分析Hadoop集群Elasticsearch分片性能优化策略集群性能优化分片性能优化挑战和解决方案总结参考资料引言在现代计算系统中,处理大规模数据和提高系统的可靠性已经成为了基础需求。集群和分片是两
- hive spark读取hive hbase外表报错分析和解决
spring208208
hivehivesparkhbase
问题现象使用Sparkshell操作hive关联Hbase的外表导致报错;hive使用tez引擎操作关联Hbase的外表时报错。问题1:使用tez或spark引擎,在hive查询时只要关联hbase的hive表就会有问题其他表正常。“org.apache.hadoop.hbase.client.RetriesExhaustedException:Can’tgetthelocations”问题2:s
- HBase的合并操作
b1gx
HBase
compact的作用flush操作会将memstore的数据落地为一个个StoreFile(HFile),那么随着时间的增长在HDFS上面就会有很多的HFile文件,这样对读操作会产生比较大的影响(读操作会对HFile进行归并查询),并且对DataNode的压力也会比较大。为了降低对读操作的影响,可以对这些HFile进行compact操作,但是compact操作会产生大量的IO,所以可以看出com
- hbase 刷新队列和文件描述符过高告警
battybaby
hbase数据库database
5节点的hbase配置为虚机,8c16g,时常出现刷新队列和文件描述符过高告警,如下图,文件描述符的告警不会自动恢复基本上每周重启一次RegionServer,重启后刷新队列会降下来。1:刷新队列高是因为小文件比较多2:文件描述符高是因为打开的文件比较多处理方法:拟合并hbase文件,后面合并了再更新看看HBASE手动触发major_compact_刘本龙的专栏-CSDN博客_hbasemajor
- HBASE面试技巧
狮歌~资深攻城狮
hbase大数据
准备HBase面试时,除了熟悉常见的面试题及其答案外,还需要掌握一些面试技巧,以更好地展示你的技能和知识。以下是一些有效的HBase面试技巧和策略:1.深入理解核心概念技术深度•倒排索引:虽然HBase本身不使用倒排索引(这是搜索引擎如Elasticsearch使用的),但理解这一概念有助于对比不同存储系统的特性。•列族设计:列族的设计对性能有很大影响,确保你能够解释如何选择合适的列族数量、块大小
- 如何学习HBase:从入门到精通的完整指南
狮歌~资深攻城狮
hbase大数据
如何学习HBase:从入门到精通的完整指南嘿,小伙伴们!如果你对大数据存储感兴趣,并且想要掌握HBase这一强大的分布式数据库,那么你来对地方了!本文将为你提供一个系统的学习路径,帮助你从零开始逐步深入理解HBase。1.基础知识准备1.1理解NoSQL数据库在开始学习HBase之前,建议先了解一下NoSQL数据库的基本概念和分类。NoSQL数据库与传统的关系型数据库(如MySQL)有很大的不同,
- 深入HBase——引入
黄雪超
大数据基础#深入HBase大数据数据库hbase
引入前面我们通过深入HDFS到深入MapReduce,从设计和落地,去深入了解了大数据最底层的基石——存储与计算是如何实现的。这个专栏则开始来看大数据的三驾马车中最后一个。通过前面我们对于GFS和MapReduce论文实现的了解,我们知道GFS在数据写入时,只对顺序写入有比较弱的一致性保障,而对于数据读取,虽然GFS支持随机读取,但在当时的硬件条件下,实际上也是支撑不了真正的高并发读取的;此外,M
- Ubuntu下配置安装Hadoop 2.2
weixin_30501857
大数据java运维
---恢复内容开始---这两天玩Hadoop,之前在我的Mac上配置了好长时间都没成功的Hadoop环境,今天想在win7虚拟机下的Ubuntu12.0464位机下配置,然后再建一个组群看一看。参考资料:1.InstallingsinglenodeHadoop2.2.0onUbuntu:http://bigdatahandler.com/hadoop-hdfs/installing-single-
- 2014 6月,比较老了
金金2019
AwesomeBigDataAcuratedlistofawesomebigdataframeworks,resourcesandotherawesomeness.Inspiredbyawesome-php,awesome-python,awesome-ruby,hadoopecosystemtable&big-data.Yourcontributionsarealwayswelcome!Awes
- Hive服务启动 之 metastore配置 和 hiveserver2
龍浮影
hive
Hive服务启动之metastore服务配置和hiveserver2 配置hive的时候都需要配置hive-site.xml,配置过程中可以选择hive直连或者使用metastore服务间接连接,那么他们之间有什么区别呢? 首先贴直连配置代码:javax.jdo.option.ConnectionURLjdbc:mysql://hadoop102:3306/metastore?useSSL=fal
- 5. clickhouse 单节点多实例部署
Toroidals
大数据组件安装部署教程clickhouse单节点多实例伪分布安装部署
环境说明:主机名:cmc01为例操作系统:centos7安装部署软件版本部署方式centos7zookeeperzookeeper-3.4.10伪分布式hadoophadoop-3.1.3伪分布式hivehive-3.1.3-bin伪分布式clickhouse21.11.10.1-2单节点多实例dolphinscheduler3.0.0单节点kettlepdi-ce-9.3.0.0单节点sqoop
- 时序数据库技术体系 – 初识InfluxDB(原理)
weixin_30622181
数据库大数据系统架构
原贴地址:http://hbasefly.com/2017/12/08/influxdb-1/?qytefg=c4ft23在上篇文章《时序数据库体系技术–时序数据存储模型设计》中笔者分别介绍了多种时序数据库在存储模型设计上的一些考虑,其中OpenTSDB基于HBase对维度值进行了全局字典编码优化,Druid采用列式存储并实现了Bitmap索引以及局部字典编码优化,InfluxDB和Beringe
- 分布式存储--大规模订单架构设计
梦江河
大数据分布式订单系统大数据
架构一:MySQL+HBase+ElasticsearchMySQL存储实时订单,HBase存储历史订单,Elasticsearch实现订单的多维度搜索。架构复杂,运维维护成本高架构二:MySQL+TablestoreTablestore其实是HBase+Elasticsearch,既能存储大量数据,也能全文搜索架构三:分布式数据库TiDB+全文搜索功能参考文章
- 蓝易云 - HBase基础知识
蓝易云
hbase数据库大数据phppython人工智能
HBase是一个分布式、可伸缩、列式存储的NoSQL数据库,它建立在Hadoop的HDFS之上,提供高可靠性、高性能的数据存储和访问。以下是HBase的基础知识:数据模型:HBase以表的形式存储数据,每个表由行和列组成,可以动态添加列族。每行由唯一的行键标识,列族和列限定符(Qualifier)用于唯一标识列。架构:HBase采用分布式架构,数据被分散存储在多个RegionServer上,每个R
- 腾讯云大数据套件TBDS与阿里云大数据能力产品对比
奋力向前123
数据库java人工智能腾讯云大数据阿里云
前言博主在接触大数据方向研究的时候是在2016年,那时候正是大数据概念非常火热的一个时间段,最著名的Google的3篇论文。GoogleFS、MapReduce、BigTable,奠定了大数据框架产品的基础。Google文件系统,计算框架和存储框架。往后所有的大数据产品和过程域无一不是在三个模块的基础上进行搭建,迭代,完善。我们最开始使用的都是开源的产品,比如hadoop,HDSF,MAPRedu
- DS缩写乱争:当小海豚撞上AI顶流,技术圈也逃不过“撞名”修罗场
数据库
DS缩写风云:从“小海豚”到“深度求索”的魔幻现实曾几何时,技术圈提到DS,人们脑海中浮现的是一只灵动的“小海豚”——ApacheDolphinScheduler(简称DS)。这个2019年诞生的分布式任务调度系统,凭借可视化DAG界面、多租户支持和对Hadoop/Spark生态的深度集成,一度是大数据工程师的“梦中情工”。然而,命运的齿轮在2025年初突然加速转动:杭州AI公司DeepSeek(
- 1. hadoop 1.0.0 source code
小阿小火苗
hadoop
https://archive.apache.org/dist/hadoop/core/hadoop-1.0.0/
- hadoop 1.0 基本概念了解
fenggfa
hadoophadoop大数据mapreduce
hadoop基本概念了解common:hadoop组件公共常用工具类Avro:Avro是用于数据序列化的系统。不同机器之间数据交流的保障。MapReduce:MapReduce是一种编程模型,分为Map函数和Reduce函数。Map函数负责将输入数据转化为中间值,中间值再通过Reduce函数转化成输出数据HDFS:HDFS是一个分布式文件系统。通过一次写入,多次读出来实现。Chukwa:Chukw
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟