【算法导论】【ACM】归并排序总结

许多有用的算法在结构上是递归的:为了解决一个给定的问题,算法一次或多次递归地调用其自身以解决紧密相关地若干子问题。这些算法典型的遵循分治法地思想:将原问题分解成几个规模较小但类似于原问题的子问题,递归地求解这些子问题,然后再合并这些子问题的解来建立原问题的解。

分治模式在每层递归时都有三个步骤:

  • 分解原问题为若干子问题,这些子问题是原问题规模较小的实例。
  • 解决这些子问题,递归地求解各子问题。若子问题规模足够小,则直接求解。
  • 合并这些子问题的解成原问题的解。

归并排序:完全遵循分治模式。

  • 分解:分解该待排序的n个元素的序列成各具n/2元素的两个子序列。
  • 解决:使用归并排序递归地解决两个子序列。
  • 合并:合并两个已排序的子序列以产生以排序的答案。

归并排序示意图:

 

归并排序实现:

#include
#include
#include
#include
#include
#include
#include
using namespace std;
const int MAXN = 1e5;
int a[MAXN], T[MAXN];
void merge_sort(int* A, int x, int y, int* T);
int main() 
{
	int n;
	cin>>n;
    for (int i = 0; i < n; i++) 
    {
        cin >> a[i];
    }
    merge_sort(a, 0, n, T);
    for (int i = 0; i < n; i++) 
	{
        cout << a[i] << endl;
    }
    return 0;
}

void merge_sort(int* A, int x, int y, int* T) 
{
    if (y - x > 1) 
    {
        int m = x + (y - x) / 2;
        int p = x, q = m, i = x;
        merge_sort(A, x, m, T);
        merge_sort(A, m, y, T);
        while (p < m || q < y) 
        {
            if (q >= y || (p < m && A[p] <= A[q])) 
	    {
                T[i++] = A[p++];
            } 
            else 
            {
                T[i++] = A[q++];
            }
        }
        for (int i = x; i < y; i++) 
        {
            A[i] = T[i];
        }
    }
}

 

例题1: 

Write a program of a Merge Sort algorithm implemented by the following pseudocode. You should also report the number of comparisons in the Merge function.

Merge(A, left, mid, right)
  n1 = mid - left;
  n2 = right - mid;
  create array L[0...n1], R[0...n2]
  for i = 0 to n1-1
    do L[i] = A[left + i]
  for i = 0 to n2-1
    do R[i] = A[mid + i]
  L[n1] = SENTINEL
  R[n2] = SENTINEL
  i = 0;
  j = 0;
  for k = left to right-1
    if L[i] <= R[j]
      then A[k] = L[i]
           i = i + 1
      else A[k] = R[j]
           j = j + 1

Merge-Sort(A, left, right){
  if left+1 < right
    then mid = (left + right)/2;
         call Merge-Sort(A, left, mid)
         call Merge-Sort(A, mid, right)
         call Merge(A, left, mid, right)

Input

In the first line n is given. In the second line, n integers are given.

Output

In the first line, print the sequence S. Two consequtive elements should be separated by a space character.

In the second line, print the number of comparisons.

Constraints

  • n ≤ 500000
  • 0 ≤ an element in S ≤ 109

Sample Input 1

10
8 5 9 2 6 3 7 1 10 4

Sample Output 1

1 2 3 4 5 6 7 8 9 10
34

【算法导论】【ACM】归并排序总结_第1张图片

Mem (MB):6.5 

#include 
#include 
const int maxn = 500000 + 100;
int a[maxn],T[maxn];
int count=0;
void merge_sort(int *A,int x,int y,int *T);
int main ()
{
	int n,i;
	while(scanf("%d",&n)!=EOF)
	{
		for(i=0;i1)
	{
		int mid=x+(y-x)/2;
		int p=x,q=mid,i=x;
		merge_sort(A,x,mid,T);
		merge_sort(A,mid,y,T);
		while(p=y || (p

 

Mem (MB):7

#include 
#include 
#include 
#include 
const int maxn = 500000;
const int  INF = 0x3f3f3f3f;
int a[maxn],L[maxn/2+2],R[maxn/2+2];
int count;
void merge(int array[],int p,int q,int r)
{
	int n1=q-p,n2=r-q,i,j,k;
	for(i=0;i

例题2:

POJ 2299

求逆序对

In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence 

9 1 0 5 4 ,


Ultra-QuickSort produces the output 

0 1 4 5 9 .


Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.

Input

The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.

Output

For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.

Sample Input

5
9
1
0
5
4
3
1
2
3
0

Sample Output

6
0

对于不同的排名结果可以用逆序来评价它们之间的差异。考虑1,2,…,n的排列i1,i2,…,in,如果其中存在j,k,满足j < k 且 ij > ik, 那么就称(ij,ik)是这个排列的一个逆序。

一个排列含有逆序的个数称为这个排列的逆序数。例如排列 263451 含有8个逆序(2,1),(6,3),(6,4),(6,5),(6,1),(3,1),(4,1),(5,1),因此该排列的逆序数就是8。显然,由1,2,…,n 构成的所有n!个排列中,最小的逆序数是0,对应的排列就是1,2,…,n;最大的逆序数是n(n-1)/2,对应的排列就是n,(n-1),…,2,1。逆序数越大的排列与原始排列的差异度就越大。

现给定1,2,…,n的一个排列,求它的逆序数。

输入
第一行是一个整数n,表示该排列有n个数(0<=n <= 100000)。
第二行是n个不同的正整数,之间以空格隔开,表示该排列。输出输出该排列的逆序数
例如:输入:6          2 6 3 4 5 1输出:8

基本思路:

1.使用二分归并排序法【分治法】进行求解;

2.将序列依此划分为两两相等的子序列;

3.对每个子序列进行排序(比较r[i]>r[j],如果满足条件,则求该子序列的逆序数count=m-i+1,其中m=(start+end)/2)

4.接着合并子序列即可。
 

#include 
#include 
const int maxn = 500000+100;
long long count;
int  a[maxn],r1[maxn];
 
/*合并子序列*/
void Merge(int s,int m,int t)
{
	int i=s,j=m+1,k=s;
	while(i<=m && j<=t)
	{
		if(a[i]<=a[j])
		   r1[k++]=a[i++];
		else
		{
		   r1[k++]=a[j++];
		   count+=(m-i+1);
		}
	}
	while(i<=m)
	   r1[k++]=a[i++];
	while(j<=t)
	   r1[k++]=a[j++];
	for(i=s;i<=t;i++)
	   a[i]=r1[i];
} 
 
/*对序列r[s]-r[t]进行归并排序*/ 
void MergeSort(int s,int t)
{
	int m;
	if(s==t) 
	   return;
	else
	{
		m=(s+t)/2;
		MergeSort(s,m);
		MergeSort(m+1,t);
		Merge(s,m,t);
	}
}
 
int main()
{
    int n,i;
    while(scanf("%d",&n)!=EOF && n)
	{
		count=0;
		for(i=0;i

 

你可能感兴趣的:(算法)