Bintree(二叉树)

阐述一下二叉树的理解

1.二叉树的一些性质

Bintree(二叉树)_第1张图片

二叉树性质

  1. 在二叉树的第i层上至多有2i-1个结点(i≥1)
  2. 深度为k的二叉树至多有2k-1个结点(k≥1)
  3. 对任何一棵二叉树,如果其终端结点数为n0,度为2的结点数为n2,则n0=n2+1
  4. 左子树的所有节点小于父节点
  5. 有字数的所有节点大于父节点

满二叉树

Bintree(二叉树)_第2张图片
1. 一棵深度为k且有2k-1个结点的二叉树称为满二叉树。

完全二叉树

Bintree(二叉树)_第3张图片

可以对满二叉树的结点进行连续编号,约定编号从根结点起,自上而下,自左至右,则由此可引出完全二叉树的定义。深度为k且有n个结点的二叉树,当且仅当其每一个结点都与深度为k的满二叉树中编号从1到n的结点一一对应时,称之为完全二叉树。

一般二叉树

Bintree(二叉树)_第4张图片

除了满二叉树之外 都是一般二叉树

2.二叉树的遍历

  1. 先序遍历、后序遍历、中序遍历就不赘述了网上一搜一大片。
  2. 阐述一下怎么按照深度从左到右遍历。

以图a为例子 我们需要借助队列的数据结构。
1. 首先获取根节点,获取他的做孩子 2 与右孩子 3,并放入队列quene中
2. 从队列中去一个元素 即 2 把该元素的左右孩子即 4、5放入队列
3. 递归 2

得到的数据输出就是按照深度从左到右遍历的数据输出。

3.搜索二叉树(查找二叉树的)的搜索方式

T key = a search key 
Node root = point to the root of a BST 
while(true){
if(root==null){ 
    break; 

} 
if(root.value.equals(key)){
return root; 

} else if(key.compareTo(root.value)<0){
root = root.left; 

} else{ 
root = root.right;
}
} 
return null;

从程序中可以看出,当BST查找的时候,先与当前节点进行比较:

1.如果相等的话就返回当前节点;

2.如果少于当前节点则继续查找当前节点的左节点;

3.如果大于当前节点则继续查找当前节点的右节点。

到此为止。

你可能感兴趣的:(算法)