流体连续性方程【The Equation of Continuity】

流体连续性方程

TheEquationofContinuity T h e E q u a t i o n o f C o n t i n u i t y

流体连续性方程表达通式

ρt+ρvv=0 ∂ ρ ∂ t + ∇ ⋅ ρ v v = 0

物理意义: 物质进入系统的量等于 物质离开离开系统的量与物质在系统内累积量的加和。


1.直角坐标系( x,y,z x , y , z )

直角坐标系Cartesian coordinates (  x,y,z   x,y,z  ): NO.
ρt+x(ρvx)+y(ρvy)+z(ρvz)=0 ∂ ρ ∂ t + ∂ ∂ x ( ρ v x ) + ∂ ∂ y ( ρ v y ) + ∂ ∂ z ( ρ v z ) = 0 1-1

2.圆柱坐标系( r,θ,z r , θ , z )

圆柱坐标系Cylindrical coordinates coordinates ( r, θ, z  r,  θ , z  ): NO.
ρt+1rr(ρrvr)+1rθ(ρvθ)+z(ρvz)=0 ∂ ρ ∂ t + 1 r ∂ ∂ r ( ρ r v r ) + 1 r ∂ ∂ θ ( ρ v θ ) + ∂ ∂ z ( ρ v z ) = 0 2-1

3.球坐标系( r,θ,ϕ r , θ , ϕ )

球坐标系Spherical coordinates( r, θϕ  r,  θ ,  ϕ   ): NO.
ρt+1r2r(ρr2vr)+1rsinθθ(ρvθsinθ)+1rsinθϕ(ρvϕ)=0 ∂ ρ ∂ t + 1 r 2 ∂ ∂ r ( ρ r 2 v r ) + 1 r s i n θ ∂ ∂ θ ( ρ v θ s i n θ ) + 1 r s i n θ ∂ ∂ ϕ ( ρ v ϕ ) = 0 3-1

参考文献

  1. R. Byron Bird, Warren E. stewart, Edwin N. Lightfoot.* Transport phenomena:Revised second edition* John Wiely &Sons, Inc.

你可能感兴趣的:(流体力学【Fluid,Mechanics】)