SDUT 1867 最短路径问题(Floyed && Dijkstra)

最短路径问题

Time Limit: 1000 ms Memory Limit: 65536 KiB

Submit Statistic

Problem Description

平面上有n个点(n<=100),每个点的坐标均在-10000~10000之间。其中的一些点之间有连线。若有连线,则表示可从一个点到达另一个点,即两点间有通路,通路的距离为两点间的直线距离。现在的任务是找出从一点到另一点之间的最短距离。

Input

第1行为整数n。
第2行到第n+1行(共n行),每行两个整数x和y,描述了一个点的坐标(以一个空格分隔)。
第n+2行为一个整数m,表示图中连线的个数。
此后的m行,每行描述一条连线,由两个整数i和j组成,表示第i个点和第j个点之间有连线。
最后一行:两个整数s和t,分别表示源点和目标点。

Output

仅1行,一个实数(保留两位小数),表示从s到t的最短路径长度。

Sample Input

5
0 0
2 0
2 2
0 2
3 1
5
1 2
1 3
1 4
2 5
3 5
1 5

Sample Output

3.41

Hint

Source

Floyed:

#include 
#define INF INT_MAX
using namespace std;
struct node
{
    int x, y; // 存坐标
} a[105];
int n, m;
double gra[105][105];
void Floyed()
{
    for (int k = 1; k <= n; k++)
    {
        for (int i = 1; i <= n; i++)
        {
            for (int j = 1; j <= n; j++)
            {
                if (gra[i][j] > gra[i][k] + gra[k][j])
                    gra[i][j] = gra[i][k] + gra[k][j];
            }
        }
    }
}
int main()
{
    scanf("%d", &n);
    for (int i = 1; i <= n; i++)
        scanf("%d %d", &a[i].x, &a[i].y);

    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= n; j++)
        {
            if (i == j)
                gra[i][j] = 0;
            else
                gra[i][j] = INF;
        }
    }

    int u, v;
    scanf("%d", &m);

    for (int i = 0; i < m; i++)
    {
        scanf("%d %d", &u, &v);
        double t = sqrt(pow((a[u].x - a[v].x), 2) + pow((a[u].y - a[v].y), 2)); // 计算两点之间的距离
        if (gra[u][v] > t)
            gra[u][v] = gra[v][u] = t;
    }

    Floyed();
    scanf("%d %d", &u, &v);
    printf("%.2lf\n", gra[u][v]);

    return 0;
}

/***************************************************
User name: jk180602
Result: Accepted
Take time: 4ms
Take Memory: 248KB
Submit time: 2019-01-18 21:43:14
****************************************************/

Dijkstra:

#include 
#define INF INT_MAX
using namespace std;
struct node
{
    int x, y;
} a[105];
int n, m;
double gra[105][105], dist[105];
int cat[105];

void Dijkstra(int k)
{
    for (int i = 1; i <= n; i++)
        dist[i] = gra[k][i];

    dist[k] = 0;
    cat[k] = 1;

    for (int q = 1; q <= n; q++)
    {
        int min = INF;
        int index = k;
        for (int j = 1; j <= n; j++)
        {
            if (!cat[j] && dist[j] < min)
            {
                min = dist[j];
                index = j;
            }
        }

        cat[index] = 1;
        for (int i = 1; i <= n; i++)
        {
            if (!cat[i] && gra[index][i] < INF && dist[i] > gra[index][i] + dist[index])
                dist[i] = gra[index][i] + dist[index];
        }
    }
}
int main()
{
    scanf("%d", &n);
    for (int i = 1; i <= n; i++)
    {
        scanf("%d %d", &a[i].x, &a[i].y);
    }

    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= n; j++)
        {
            if (i == j)
                gra[i][j] = 0;
            else
                gra[i][j] = INF;
        }
    }

    int u, v;
    scanf("%d", &m);
    for (int i = 0; i < m; i++)
    {
        scanf("%d %d", &u, &v);
        double t = sqrt(pow((a[u].x - a[v].x), 2) + pow((a[u].y - a[v].y), 2));
        if (gra[u][v] > t)
            gra[u][v] = gra[v][u] = t;
    }
    scanf("%d %d", &u, &v);
    memset(cat, 0, sizeof(cat));

    Dijkstra(u);
    printf("%.2lf\n", dist[v]);

    return 0;
}

/***************************************************
User name: jk180602
Result: Accepted
Take time: 0ms
Take Memory: 244KB
Submit time: 2019-01-18 22:17:43
****************************************************/

 

你可能感兴趣的:(数据结构--,图-最短路)