62 Unique Paths

题目链接:https://leetcode.com/problems/unique-paths/

题目:

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?
Note: m and n will be at most 100.


Above is a 3 x 7 grid. How many possible unique paths are there?

解题思路:
现在一遇到动态规划就跪,以后要开专题训练的节奏。
看了大牛的做法,顿时豁然开朗。
到达每一个网格的路径数等于它上面和左面网格的路径数之和。
据此,我们可以建立一个数组来保存一行网格所拥有的路径数。
这个数组的个数是网格的列数,遍历网格的方式是一行一行的遍历。这样,每计算完一个网格的路径数,就自动取代了上一行当前列的网格的路径数。
注:递归的思路在本题中会超时

参考的大神思路:http://blog.csdn.net/linhuanmars/article/details/22126357

代码实现:

public class Solution {
    public int uniquePaths(int m, int n) {
        if(m <= 0 || n <= 0)
            return 0;
        int[] res = new int[n];
        res[0] = 1;
        for(int i = 0; i < m; i ++) {
            for(int j = 1; j < n; j ++) {
                res[j] = res[j] + res[j - 1];
            }
        }
        return res[n - 1];
    }
}
61 / 61 test cases passed.
Status: Accepted
Runtime: 0 ms

你可能感兴趣的:(LeetCode)