Handler是Android消息机制的上层接口,这使得在开发过程中只需要和Handler交互即可。
Android消息机制主要指的是Handler的运行机制,Handler底层运行需要MessageQueue和Looper的支撑。
创建Handler
给当前线程创建Looper,或者在一个有Looper的线程创建Handler。否则会抛出异常。
创建完Handler,Looper以及MessageQueue就可以和Handler一起协同工作了。
可以通过Handler的post方法将一个Runnable投递到Handler内部的Looper中去处理,也可以通过Handler的send方法发送一个消息,这个消息同样会在Looper中处理
这里和书上的不一样,ThreadLocal的源码已经发成了很大的改变。
ThreadLocal是一个数据结构,有点像HashMap,可以保存一个值,并且保证各个线程的数据互不干扰。
ThreadLocal localName = new ThreadLocal();
localName.set("aaa");
String name = localName.get();
线程1初始化为aaa,线程2在此get时,值将会是null。
源码
public void set(T value) {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value);
}
public T get() {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null) {
ThreadLocalMap.Entry e = map.getEntry(this);
if (e != null) {
@SuppressWarnings("unchecked")
T result = (T)e.value;
return result;
}
}
return setInitialValue();
}
ThreadLocalMap getMap(Thread t) {
return t.threadLocals;
}
可以看出每个线程有一个ThreadLocalMap的数据结构,当执行set时,会将值存在指定的ThreadLocalMap中,由于每个线程的ThreadLocalMap是不一样的,所以各个线程互不干扰。
ThreadLoalMap
ThreadLoalMap 是一个类似HashMap的数据结构。
在ThreadLoalMap中,是初始化一个大小为一个Entry的数组,Entry对象用来保存每一个key-value键值对,只不过可以永远是ThreadLocal对象。
看一看ThreadLoalMap插入一个key-values的实现。
private void set(ThreadLocal<?> key, Object value) {
Entry[] tab = table;
int len = tab.length;
int i = key.threadLocalHashCode & (len-1);
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {
ThreadLocal<?> k = e.get();
if (k == key) {
e.value = value;
return;
}
if (k == null) {
replaceStaleEntry(key, value, i);
return;
}
}
tab[i] = new Entry(key, value);
int sz = ++size;
if (!cleanSomeSlots(i, sz) && sz >= threshold)
rehash();
}
每个ThreadLocal都有一个Hash值threadLocalHashCode
插入过程中根据ThreadLocal对象的hash值,定位到table中的位置i
插入过程:
消息队列指的是MessageQueue,MessageQueue主要包含两个操作,插入和读取,对应方法enqueueMessage和next,虽然MessageQueue叫做消息队列,但是他的内部实现是通过单链表维护消息列表。
enqueueMessage源码
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
其就是链表的插入操作。
next源码
Message next() {
·····
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
······
}
}
next是一个无限循环的方法,如果消息队列中没有消息,那么next方法会一直阻塞在这里。当有新消息时,next方法会返回这条消息,并从单链表中删除。
Looper在Android消息机制中扮演着消息循环的角色,会不断的从MessageQueue中查看是否有消息,如果有新消息就会立即处理,否则就会阻塞在那里。在构造方法中会创建一个MessageQueue消息队列然后保存当前线程对象。
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
Handler工作需要Looper,没有Looper的线程会报错,通过Looper.prepare()即可为当前线程创建一个Looper,通过Looper.loop()开启消息循环
new Thread(new Runnable() {
@Override
public void run() {
Looper.prepare();
Handler handler = new Handler();
Looper.loop();
}
}).start();
除了prepare,还提供了了prepareMainLooper方法,这个方法主要是给主线程也就是ActivityThread创建Looper使用的。
Looper提供quit和quitSafely来退出一个Looper,区别是前者会直接退出,后者会处理完所有的消息后才退出。退出后Handler的send方法会返回false。
在子线程中如果手动创建了一个Looper,那么在事情完成之后需要调用quit方法终止消息循环,否则子线程会一直处于等待的状态。
Looper最重要的一个方法是loop方法,只有调用loop方法之后,消息循环才会真正的开始起作用。
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
// Allow overriding a threshold with a system prop. e.g.
// adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'
final int thresholdOverride =
SystemProperties.getInt("log.looper."
+ Process.myUid() + "."
+ Thread.currentThread().getName()
+ ".slow", 0);
boolean slowDeliveryDetected = false;
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
final Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
final long traceTag = me.mTraceTag;
long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
if (thresholdOverride > 0) {
slowDispatchThresholdMs = thresholdOverride;
slowDeliveryThresholdMs = thresholdOverride;
}
final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);
final boolean needStartTime = logSlowDelivery || logSlowDispatch;
final boolean needEndTime = logSlowDispatch;
if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
}
final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
final long dispatchEnd;
try {
msg.target.dispatchMessage(msg);
dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
if (logSlowDelivery) {
if (slowDeliveryDetected) {
if ((dispatchStart - msg.when) <= 10) {
Slog.w(TAG, "Drained");
slowDeliveryDetected = false;
}
} else {
if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery",
msg)) {
// Once we write a slow delivery log, suppress until the queue drains.
slowDeliveryDetected = true;
}
}
}
if (logSlowDispatch) {
showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);
}
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();
}
}
源码比较好理解,loop方法是一个死循环,唯一跳出循环的方式是MessageQueue的next方法返回了null,当Looper的quit方法被调用后,Looper就会调用MessageQueue的quit或quitSaftly方法通知消息队列退出,此时他的next方法会返回null,当没有消息时,next方法会一直堵塞在那里,这也导致loop方法一直阻塞在那里。
如果MessageQueue的next方法返回了新消息,Looper就会处理这条消息。
msg.target.dispatchMessage(msg);
msg.target是发送这条消息的对象。
最终发送的消息最终又交给他的dispatchMessage();方法处理了。
Handler的dispatchMessage方法是在创建Handler时所使用的Looper中执行的,这样就成功的将代码切换到指定的线程中去了。
Handler的主要工作是发送消息和接收消息。消息的发送可以通过post的一系列方法以及send的一系列方法实现,post最终是通过send的一系列方法来实现的。
public final boolean sendMessage(Message msg) {
return sendMessageDelayed(msg, 0);
}
public final boolean sendMessageDelayed(Message msg, long delayMillis) {
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
发送消息的方法最终会调用sendMessageAtTime
并且最后调用queue.enqueueMessage(msg, uptimeMillis);
请消息插入到消息队列。然后MessageQueue的next方法就会返回这个消息给Looper,Looper接收到消息后交给Handler处理,这样就会调用dispatchMessage()方法。
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
可以清楚的看到,先检查Message的callback是否为null,不为null就通过handleCallBack来处理。
Message的callBack的一个Runnable对象,实际上是post方法传递的Runnable
private static void handleCallback(Message message) {
message.callback.run();
}
handleCallback逻辑很简单,实际上就是运行run方法。
然后就是mCallback,检查mCallBack是否为null,不为null就调用他的handleMessage方法。
public interface Callback {
/**
* @param msg A {@link android.os.Message Message} object
* @return True if no further handling is desired
*/
public boolean handleMessage(Message msg);
}
Callback是一个接口,就是在创建Handler Handler handler = new Handler(callback)时构造方法里面的参数。
Handler handler = new Handler(new Handler.Callback() {
@Override
public boolean handleMessage(Message msg) {
return false;
}
});
最后调用Handler本身的方法handleMessage处理消息。它是一个空实现。
/**
* Subclasses must implement this to receive messages.
*/
public void handleMessage(Message msg) {
}
public static void main(String[] args) {
Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ActivityThreadMain");
// CloseGuard defaults to true and can be quite spammy. We
// disable it here, but selectively enable it later (via
// StrictMode) on debug builds, but using DropBox, not logs.
CloseGuard.setEnabled(false);
Environment.initForCurrentUser();
// Set the reporter for event logging in libcore
EventLogger.setReporter(new EventLoggingReporter());
// Make sure TrustedCertificateStore looks in the right place for CA certificates
final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());
TrustedCertificateStore.setDefaultUserDirectory(configDir);
Process.setArgV0("" );
Looper.prepareMainLooper();
// Find the value for {@link #PROC_START_SEQ_IDENT} if provided on the command line.
// It will be in the format "seq=114"
long startSeq = 0;
if (args != null) {
for (int i = args.length - 1; i >= 0; --i) {
if (args[i] != null && args[i].startsWith(PROC_START_SEQ_IDENT)) {
startSeq = Long.parseLong(
args[i].substring(PROC_START_SEQ_IDENT.length()));
}
}
}
ActivityThread thread = new ActivityThread();
thread.attach(false, startSeq);
if (sMainThreadHandler == null) {
sMainThreadHandler = thread.getHandler();
}
if (false) {
Looper.myLooper().setMessageLogging(new
LogPrinter(Log.DEBUG, "ActivityThread"));
}
// End of event ActivityThreadMain.
Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
Looper.loop();
throw new RuntimeException("Main thread loop unexpectedly exited");
}
主线程通过Looper.prepareMainLooper(); 来创建Looper和MessageQueue。
class H extends Handler {
public static final int BIND_APPLICATION = 110;
public static final int EXIT_APPLICATION = 111;
public static final int RECEIVER = 113;
public static final int CREATE_SERVICE = 114;
public static final int SERVICE_ARGS = 115;
public static final int STOP_SERVICE = 116;
public static final int CONFIGURATION_CHANGED = 118;
public static final int CLEAN_UP_CONTEXT = 119;
public static final int GC_WHEN_IDLE = 120;
public static final int BIND_SERVICE = 121;
public static final int UNBIND_SERVICE = 122;
public static final int DUMP_SERVICE = 123;
public static final int LOW_MEMORY = 124;
public static final int PROFILER_CONTROL = 127;
public static final int CREATE_BACKUP_AGENT = 128;
public static final int DESTROY_BACKUP_AGENT = 129;
public static final int SUICIDE = 130;
······
}
主线程的消息循环开始了以后,ActivityThread还需要一个Handler来和消息队列进行交互,这个Handler就是Activity.H,它内部定义了一组消息类型,主要包括四大组件的启动和停止。
ActivityThread通过ApplicationThread和AMS进行进程间通信,AMS以进程间通信的方式完成ActivityThread的请求后会回调Application中的Binder方法,然后ApplicationThred会向H发送消息,H收到消息后会将Application中的逻辑切换到ActivityThread中去执行,即切换到主线程中去执行。这个过程就是主线程的消息循环模型。
这段话暂时没理解,先留着。
收藏网上的几张图
Handler是一种可以使用Handler的Thread,他的实现很简单,就是在run方法中通过Looper.prapare()来创建消息队列,并通过Looper.loop()来开启消息循环。
基本使用
HandlerThread handlerThread = new HandlerThread("");
handlerThread.start();
Handler handler1 = new Handler(handlerThread.getLooper(), new Handler.Callback() {
@Override
public boolean handleMessage(Message msg) {
//处理UI
return true;
}
});
handler1.post(new Runnable() {
@Override
public void run() {
//子任务
}
});
上面步骤不能乱。
源码
@Override
public void run() {
mTid = Process.myTid();
Looper.prepare();
synchronized (this) {
mLooper = Looper.myLooper();
notifyAll();
}
Process.setThreadPriority(mPriority);
onLooperPrepared();
Looper.loop();
mTid = -1;
}
从源码实现看,他和普通Thread有显著的不同,普通Thread主要是执行一个耗时任务,而HandlerThread在内存创建了消息队列,外界需要通过Handler的消息方式来通知HandlerThread执行一个具体的任务。
注意到
notifyAll();
这是由于线程同步问题的存在。
Handler handler1 = new Handler(handlerThread.getLooper(), new Handler.Callback() {
public Looper getLooper() {
if (!isAlive()) {
return null;
}
// If the thread has been started, wait until the looper has been created.
synchronized (this) {
while (isAlive() && mLooper == null) {
try {
wait();
} catch (InterruptedException e) {
}
}
}
return mLooper;
}
在创建Handler 传参getLooper()时,如果线程存活并且mLooper ==null表示HandlerThread的run方法还没有执行完,Looper对象还是null,所以进入等待状态,当run方法执行完时,mLooper !=null,可以由源码看到执行了notifyAll()方法来唤醒线程,来完成Handler的创建。
Handler handler = new Handler(new Handler.Callback() {
@Override
public boolean handleMessage(Message msg) {
return false;
}
});
使用内部类包括匿名类来创建Handler的时候Handler对象会隐式的持有Activity的引用。
Handler通常伴随着一个耗时的后台线程一起出现,这个后台线程执行完毕后发送消息去更新UI,当Activity不在使用,它就有可能在GC检查时被回收掉,但是由于线程尚未执行完,而该线程持有Handler的引用,这个Handler又持有Activity的引用,就导致该Activity无法被回收。
另外如果执行了postDelayed方法,那么在设定的delay到达之前,会有一条 MessageQueue -> Message -> Handler -> Activity 的链,导致你的Activity被持有引用而无法回收。
解决:弱引用。
static class MyHandler extends Handler {
WeakReference<Activity> weakReference;
MyHandler(Activity activity) {
weakReference = new WeakReference<>(activity);
}
@Override
public void handleMessage(Message msg) {
Activity activity = weakReference.get();
if (activity != null) {
// 处理activity的UI
}
}
}
使用内部静态类,这样内部类就不会在持有外部类即Activity的引用,所以不会导致外部类实例的内存泄漏。
参考
《Android 开发艺术探索》
https://www.jianshu.com/p/377bb840802f
https://blog.csdn.net/ly502541243/article/details/52062179
https://blog.csdn.net/qq_30379689/article/details/53394061
https://www.jianshu.com/p/f0b23ee5a922
https://www.cnblogs.com/leipDao/p/8005520.html