- 模型可解释性:基于博弈论的SHAP值计算与特征贡献度分析(附PyTorch/TensorFlow实现)
燃灯工作室
Aipytorchtensorflow人工智能
一、技术原理与数学推导(含典型案例)1.1Shapley值基础公式SHAP值基于合作博弈论中的Shapley值,计算公式为:ϕi=∑S⊆F∖{i}∣S∣!(∣F∣−∣S∣−1)!∣F∣![f(S∪{i})−f(S)]\phi_i=\sum_{S\subseteqF\setminus\{i\}}\frac{|S|!(|F|-|S|-1)!}{|F|!}[f(S\cup\{i\})-f(S)]ϕi=S
- 国产 DeepSeek V3 被秒成“前浪“?谷歌开放最强 Gemini 2.0 全家桶:速度快60倍,上下文还长16倍!
Bryan Ding
人工智能深度学习
谷歌向所有人发布了Gemini2.0——迄今为止谷歌“功能最强大”的人工智能模型套件。1谷歌Gemini2.0向所有人开放去年12月,谷歌发布Gemini2.0Flash的实验版本,正式开启了代理型AI的新时代。Gemini2.0Flash是谷歌为开发者群体打造的高效主力模型,具有低延迟、高性能等优势。今年早些时候,谷歌在GoogleAIStudio中更新了2.0FlashThinkingExpe
- 模型的秘密武器:利用注意力改善长上下文推理能力
步子哥
人工智能自然语言处理深度学习语言模型
【导语】在大语言模型(LLM)不断刷新各项任务记录的今天,很多模型宣称能处理超长上下文内容,但在实际推理过程中,复杂问题往往因隐性事实的遗漏而败下阵来。今天,我们就以《AttentionRevealsMoreThanTokens:Training-FreeLong-ContextReasoningwithAttention-guidedRetrieval》为蓝本,带大家通俗解读如何利用Transf
- GAN生成对抗网络小记
文弱_书生
乱七八糟生成对抗网络人工智能神经网络
生成对抗网络(GAN)深入解析:数学原理与优化生成对抗网络(GenerativeAdversarialNetwork,GAN)是一个基于博弈论的深度学习框架,通过生成器(G)和判别器(D)之间的对抗训练,生成高度逼真的数据。其核心思想是让GGG生成伪造数据以欺骗DDD,而DDD则努力分辨真实数据与伪造数据。GAN在理论上可以看作一个极小极大(Minimax)优化问题。1.GAN的数学公式1.1生成
- weka 决策树
marui1982
机器学习
1.参数说明:Generaloptions:-hor-helpOutputhelpinformation.-synopsisor-infoOutputsynopsisforclassifier(useinconjunctionwith-h)-t(trainfile,训练文件,通常训练时只需要此文件即可,会进行10交叉验证)Setstrainingfile.-T(测试文件,如果设置,则不进行交叉验证
- git subtree 高频使用方法
NickDeCodes
gitgitgithub
subtree高频使用方法官网添加新的子项目查看子项目的差异使用子项目克隆存储库引入超级项目更新改变分支引入子项目更新对子项目进行更改将更改推送到子项目存储库高效配置添加新的子项目subtreegitsubtreeadd--prefix=example-submodulehttps://github.com/githubtraining/example-submodulemaster--squas
- Training-Free Transformer Architecture Search WithZero-Cost Proxy Guided Evolution(预览版本)
境心镜
transformer深度学习人工智能
摘要Transformers已表现出卓越的性能,然而,其架构设计是一个耗时的过程,需要专业知识和反复试验。因此,研究通过Transformer架构搜索(TAS)自动搜索高性能Transformers的有效方法是值得的。为了提高搜索效率,基于无训练代理的方法已在神经架构搜索(NAS)中得到广泛采用。然而,这些代理被发现不足以很好地推广到Transformer搜索空间,这一点已被多项研究和我们自己的实
- Training-free Neural Architecture Searchthrough Variance of Knowledge of Deep Network Weights(预览版本)
境心镜
免训练深度学习人工智能NAS
代码位置摘要深度学习彻底改变了计算机视觉,但它使用深度网络架构取得了巨大的成功,而这些架构大多是手工制作的,因此可能不是最理想的。神经架构搜索(NAS)旨在通过遵循明确定义的优化范式来弥补这一差距,该范式系统地寻找最佳架构,给定客观标准,例如最大分类准确度。然而,NAS的主要限制是其天文数字般的计算成本,因为它通常需要从头开始训练每个候选网络架构。在本文中,我们旨在通过基于Fisher信息提出一种
- AI芯片概述-分类、应用、技术(APU、CPU、DPU、GPU、NPU和TPU)及厂家
一码当前
AI基础人工智能分类数据挖掘
写这篇文章的起因是老板想了解下AI芯片(NPU/GPU区别等),他不是搞技术那一挂的,所以就简单整理下,留作记录,顺便分享给各位。文章目录一、AI芯片是什么?二、AI芯片分类1.Training(训练)2.Inference(推理)三、AI芯片应用领域四、AI芯片技术路线五、APU、CPU、DPU、GPU、NPU和TPU六、AI芯片厂家一、AI芯片是什么?AI芯片:针对人工智能算法做了特殊加速设计
- BurpSuit官方实验室之SQL注入
tpaer
从入门到入狱web安全sqlweb后端数据库
BurpSuit官方实验室之SQL注入这是BurpSuit官方的实验室靶场,以下将记录个人SQL注入共17个Lab的通关过程WebSecurityAcademy:FreeOnlineTrainingfromPortSwiggerlab1:SQLinjectionvulnerabilityinWHEREclauseallowingretrievalofhiddendataWHERE子句中的SQL注入
- 探索未来文本的无限可能:OLMo 开源语言模型深度解析
钟洁祺
探索未来文本的无限可能:OLMo开源语言模型深度解析OLMoModeling,training,eval,andinferencecodeforOLMo项目地址:https://gitcode.com/gh_mirrors/ol/OLMo在人工智能的浩瀚领域中,一个崭新的星体正在升起——OLMo:OpenLanguageModel。由AI2(艾伦人工智能研究所)的科学家们精心打造,OLMo不仅仅是
- 零基础也能看懂的ChatGPT等大模型入门解析!大模型入门到精通,看这篇就够了!
大模型微调实战
chatgpt百度人工智能大数据wps学习大模型
近两年,大语言模型LLM(LargeLanguageModel)越来越受到各行各业的广泛应用及关注。对于非相关领域研发人员,虽然不需要深入掌握每一个细节,但了解其基本运作原理是必备的技术素养。本文笔者结合自己的理解,用通俗易懂的语言对复杂的概念进行了总结,与大家分享~什么是ChatGPT?GPT对应的是三个关键概念:生成式(Generative)、预训练(Pre-Training)和Transfo
- 探秘Mixup:数据增强的新利器
荣正青
探秘Mixup:数据增强的新利器mixupImplementationofthemixuptrainingmethod项目地址:https://gitcode.com/gh_mirrors/mi/mixup项目简介是一个由HongyiZhang开发的Python库,它实现了机器学习中的数据增强策略——Mixup方法。这个项目的目标是通过混合不同样本的数据点生成新的训练样本,从而帮助模型更好地学习数
- 强化学习与网络安全资源-论文和环境
AI拉呱
web安全安全
TableofContentsRL-EnvironmentsPapersBooksBlogpostsTalksMiscellaneous↑EnvironmentsPentestingTrainingFrameworkforReinforcementLearningAgents(PenGym)TheARCDPrimary-levelAITrainingEnvironment(PrimAITE)CSL
- 大模型隐空间推理论文阅读笔记
猴猴猪猪
AIGCpython实验记录人工智能深度学习
文章目录TrainingLargeLanguageModelstoReasoninaContinuousLatentSpace一.简介1.1摘要1.2引言TrainingLargeLanguageModelstoReasoninaContinuousLatentSpace一.简介机构:Meta代码:任务:特点:方法:1.1摘要现状:大语言模型往往局限在“languagespace"进行推理,在解决
- Meta:基于数据关系的LLM高效预训练
大模型任我行
大模型-模型训练人工智能自然语言处理语言模型论文笔记
标题:Data-EfficientPretrainingwithGroup-LevelDataInfluenceModeling来源:arXiv,2502.14709摘要数据高效的预训练已显示出提高缩放定律的巨大潜力。本文认为有效的预训练数据应该在组级别进行管理,将一组数据点作为一个整体而不是独立的贡献者。为此,我们提出了一种新的数据高效预训练方法GroupLevelDataInfluenceMo
- 扑克强化学习:DouZero/douzero/dmc/dmc.py (train)
强化学习曾小健
python人工智能深度学习
deftrain(flags):"""Thisisthemainfuntionfortraining.Itwillfirstinitilizeeverything,suchasbuffers,optimizers,etc.Thenitwillstartsubprocessesasactors.Then,itwillcalllearningfunctionwithmultiplethreads.""
- TensorFlow 架构
weixin_zdpau
AItensorflow人工智能神经网络
https://www.tensorflow.org/guide/extend/architecture一WedesignedTensorFlowforlarge-scaledistributedtrainingandinference,butitisalsoflexibleenoughtosupportexperimentationwithnewmachinelearningmodelsands
- TensorFlow基础架构
humbinal
tensorflow
处理结构计算图纸Tensorflow首先要定义神经网络的结构,然后再把数据放入结构当中去运算和training.处理结构因为TensorFlow是采用数据流图(dataflowgraphs)来计算,所以首先我们得创建一个数据流流图,然后再将我们的数据(数据以张量(tensor)的形式存在)放在数据流图中计算.节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数
- 阅读笔记:ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Task
Araloak
论文阅读笔记深度学习自然语言处理
阅读笔记:ViLBERT:PretrainingTask-AgnosticVisiolinguisticRepresentationsforVision-and-LanguageTasksContribution提出ViLBERT模型(twostreamsmodel),由两个BERT结构分别对text和image进行学习,通过cross-attention进行信息交流,在两个预训练任务(proxy
- 程序员读点微观经济学
猿脑2.0
python
微观经济学学习路径、核心内容、数据来源、实际作用及案例实践的系统性总结:一、微观经济学学习框架1.核心知识模块模块关键内容基础理论-供需理论(均衡价格、弹性分析)-消费者行为(效用最大化、无差异曲线)-生产者行为(成本曲线、利润最大化)市场结构-完全竞争市场-垄断与寡头(价格歧视、博弈论)-垄断竞争(产品差异化)市场失灵与政策-外部性(污染、补贴)-公共物品与搭便车问题-信息不对称(逆向选择、道德
- 【AI】详解从数学到物理再到工程应用,人类研究新理论 新方法的研究范式 (deepseek chatgpt Gemini等)...
十年一梦实验室
人工智能chatgpt
deepseek-R1Chatgpto3-miniGemini2.0FlashThinkingExperimentalClaudeMicrosoftCopilot-ThinkDeeperGrok3-Deepsearchdeepseek-R1人类探索新理论与方法的研究范式遵循着从抽象数学到物理建模,最终实现工程应用的递进路径。这一过程体现了基础科学与应用技术的深度协同,形成了知识创新的完整链条。以下
- 文献阅读(part2)--Towards K-means-friendly spaces Simultaneous deep learning and clustering
GUI Research Group
机器学习python深度聚类
学习笔记,仅供参考文章目录AbstractIntroductionBackgroundandRelatedWorksProposedFormulationOptimizationProcedureInitializationviaLayer-wisePre-Training(通过分层预训练进行初始化)AlternatingStochasticOptimizationExperiments合成数据演
- 【深度学习】预训练和微调概述
CS_木成河
深度学习深度学习人工智能语言模型预训练微调
预训练和微调概述1.预训练和微调的介绍1.1预训练(Pretraining)1.2微调(Fine-Tuning)2.预训练和微调的区别预训练和微调是现代深度学习模型训练中的两个关键步骤,它们通常是一个预训练-微调(Pretrain-Finetune)流程的不同阶段。两者相辅相成,共同帮助模型从通用的知识到特定任务的适应。1.预训练和微调的介绍1.1预训练(Pretraining)定义:预训练是指在
- 【学习笔记】李宏毅2021春机器学习课程第2.3节:Adaptive Learning Rate
Harryline-lx
机器学习机器学习人工智能深度学习
文章目录Trainingstuck≠SmallGradientDifferentparametersneedsdifferentlearningrateRootmeansquareAdagradRMSPropAdamLearningRateSchedulingTrainingstuck≠SmallGradient首先要明确的一点是,目前当我们用gradientdescend来做optimizati
- 1.5 企业级AI大模型四阶技术全景解析:从Prompt到Pre-training的进化路径
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力人工智能promptchatgptlangchaingpt
企业级AI大模型四阶技术全景解析:从Prompt到Pre-training的进化路径一、技术演进金字塔:四阶技术如何构建AI新范式▲预训练│(万亿参数基建)├─大模型微调│(领域知识注入)├─AI智能体│(任务自动化)└─提示工程(零样本交互)1.1技术层级关系与适用场景技术阶段技术门槛算力需求企业应用成熟度典型工具链提示工程★☆☆☆☆CPU即可90%+企业已部署LangChain、AutoGPT
- X-R1 项目代码文件的详细剖析并精读rewards、grpo、x_grpo_trainer(src/x_r1)
仙人掌_lz
人工智能人工智能深度学习学习
这个项目名为[X-R1](https://github.com/dhcode-cpp/X-R1),是一个基于强化学习的训练框架,旨在构建一个易于使用、低成本的训练框架,以加速ScalingPost-Training的开发。以下是对该项目的详细解释:项目结构项目的主要目录结构如下:X-R1/├──.gitignore├──LICENSE├──Makefile├──README.md├──requir
- DeepSeek预言未来5年升值最快的东西
ZhuBin365
其它人工智能机器人
Thinking好的,我现在需要思考未来5年哪些东西可能会升值最快。首先,我得考虑当前的经济趋势和技术发展的方向。通货膨胀可能继续,所以实物资产可能保值。然后是科技领域,比如人工智能、量子计算这些前沿技术相关的资产可能会有增长。接着,环保和可持续发展是热门话题,可再生能源相关的产业可能会增值。例如,太阳能、风能的公司股票或者相关技术专利。另外,电动汽车和电池技术也可能持续发展,锂、钴等稀有金属的需
- DeepSeek-V2 论文解读:混合专家架构的新突破
进一步有进一步的欢喜
DeepSeek-V2大模型MoE混合专家架构
论文链接:DeepSeek-V2:AStrong,Economical,andEfficientMixture-of-ExpertsLanguageModel目录一、引言二、模型架构(一)多头部潜在注意力(MLA):重塑推理效率(二)DeepSeekMoE:经济高效的训练架构三、预训练(Pre-Training):夯实模型基础(一)实验设置(二)评估四、对齐(Alignment):优化模型表现(一
- KDD 2023 | 先睹为快!KDD 2023论文合集50篇(附下载地址)
马拉AI
机器学习人工智能深度学习
下载地址:点我跳转1.DoubleAdapt:AMeta-learningApproachtoIncrementalLearningforStockTrendForecastingCode:NoneArea:一种用于股票趋势预测增量学习的元学习方法2.HomoGCL:RethinkingHomophilyinGraphContrastiveLearningCode:https://github.c
- linux系统服务器下jsp传参数乱码
3213213333332132
javajsplinuxwindowsxml
在一次解决乱码问题中, 发现jsp在windows下用js原生的方法进行编码没有问题,但是到了linux下就有问题, escape,encodeURI,encodeURIComponent等都解决不了问题
但是我想了下既然原生的方法不行,我用el标签的方式对中文参数进行加密解密总该可以吧。于是用了java的java.net.URLDecoder,结果还是乱码,最后在绝望之际,用了下面的方法解决了
- Spring 注解区别以及应用
BlueSkator
spring
1. @Autowired
@Autowired是根据类型进行自动装配的。如果当Spring上下文中存在不止一个UserDao类型的bean,或者不存在UserDao类型的bean,会抛出 BeanCreationException异常,这时可以通过在该属性上再加一个@Qualifier注解来声明唯一的id解决问题。
2. @Qualifier
当spring中存在至少一个匹
- printf和sprintf的应用
dcj3sjt126com
PHPsprintfprintf
<?php
printf('b: %b <br>c: %c <br>d: %d <bf>f: %f', 80,80, 80, 80);
echo '<br />';
printf('%0.2f <br>%+d <br>%0.2f <br>', 8, 8, 1235.456);
printf('th
- config.getInitParameter
171815164
parameter
web.xml
<servlet>
<servlet-name>servlet1</servlet-name>
<jsp-file>/index.jsp</jsp-file>
<init-param>
<param-name>str</param-name>
- Ant标签详解--基础操作
g21121
ant
Ant的一些核心概念:
build.xml:构建文件是以XML 文件来描述的,默认构建文件名为build.xml。 project:每个构建文
- [简单]代码片段_数据合并
53873039oycg
代码
合并规则:删除家长phone为空的记录,若一个家长对应多个孩子,保留一条家长记录,家长id修改为phone,对应关系也要修改。
代码如下:
- java 通信技术
云端月影
Java 远程通信技术
在分布式服务框架中,一个最基础的问题就是远程服务是怎么通讯的,在Java领域中有很多可实现远程通讯的技术,例如:RMI、MINA、ESB、Burlap、Hessian、SOAP、EJB和JMS等,这些名词之间到底是些什么关系呢,它们背后到底是基于什么原理实现的呢,了解这些是实现分布式服务框架的基础知识,而如果在性能上有高的要求的话,那深入了解这些技术背后的机制就是必须的了,在这篇blog中我们将来
- string与StringBuilder 性能差距到底有多大
aijuans
之前也看过一些对string与StringBuilder的性能分析,总感觉这个应该对整体性能不会产生多大的影响,所以就一直没有关注这块!
由于学程序初期最先接触的string拼接,所以就一直没改变过自己的习惯!
- 今天碰到 java.util.ConcurrentModificationException 异常
antonyup_2006
java多线程工作IBM
今天改bug,其中有个实现是要对map进行循环,然后有删除操作,代码如下:
Iterator<ListItem> iter = ItemMap.keySet.iterator();
while(iter.hasNext()){
ListItem it = iter.next();
//...一些逻辑操作
ItemMap.remove(it);
}
结果运行报Con
- PL/SQL的类型和JDBC操作数据库
百合不是茶
PL/SQL表标量类型游标PL/SQL记录
PL/SQL的标量类型:
字符,数字,时间,布尔,%type五中类型的
--标量:数据库中预定义类型的变量
--定义一个变长字符串
v_ename varchar2(10);
--定义一个小数,范围 -9999.99~9999.99
v_sal number(6,2);
--定义一个小数并给一个初始值为5.4 :=是pl/sql的赋值号
- Mockito:一个强大的用于 Java 开发的模拟测试框架实例
bijian1013
mockito单元测试
Mockito框架:
Mockito是一个基于MIT协议的开源java测试框架。 Mockito区别于其他模拟框架的地方主要是允许开发者在没有建立“预期”时验证被测系统的行为。对于mock对象的一个评价是测试系统的测
- 精通Oracle10编程SQL(10)处理例外
bijian1013
oracle数据库plsql
/*
*处理例外
*/
--例外简介
--处理例外-传递例外
declare
v_ename emp.ename%TYPE;
begin
SELECT ename INTO v_ename FROM emp
where empno=&no;
dbms_output.put_line('雇员名:'||v_ename);
exceptio
- 【Java】Java执行远程机器上Linux命令
bit1129
linux命令
Java使用ethz通过ssh2执行远程机器Linux上命令,
封装定义Linux机器的环境信息
package com.tom;
import java.io.File;
public class Env {
private String hostaddr; //Linux机器的IP地址
private Integer po
- java通信之Socket通信基础
白糖_
javasocket网络协议
正处于网络环境下的两个程序,它们之间通过一个交互的连接来实现数据通信。每一个连接的通信端叫做一个Socket。一个完整的Socket通信程序应该包含以下几个步骤:
①创建Socket;
②打开连接到Socket的输入输出流;
④按照一定的协议对Socket进行读写操作;
④关闭Socket。
Socket通信分两部分:服务器端和客户端。服务器端必须优先启动,然后等待soc
- angular.bind
boyitech
AngularJSangular.bindAngularJS APIbind
angular.bind 描述: 上下文,函数以及参数动态绑定,返回值为绑定之后的函数. 其中args是可选的动态参数,self在fn中使用this调用。 使用方法: angular.bind(se
- java-13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class KickOutBadGuys {
/**
* 题目:13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
* Maybe you can find out
- Redis.conf配置文件及相关项说明(自查备用)
Kai_Ge
redis
Redis.conf配置文件及相关项说明
# Redis configuration file example
# Note on units: when memory size is needed, it is possible to specifiy
# it in the usual form of 1k 5GB 4M and so forth:
#
- [强人工智能]实现大规模拓扑分析是实现强人工智能的前奏
comsci
人工智能
真不好意思,各位朋友...博客再次更新...
节点数量太少,网络的分析和处理能力肯定不足,在面对机器人控制的需求方面,显得力不从心....
但是,节点数太多,对拓扑数据处理的要求又很高,设计目标也很高,实现起来难度颇大...
- 记录一些常用的函数
dai_lm
java
public static String convertInputStreamToString(InputStream is) {
StringBuilder result = new StringBuilder();
if (is != null)
try {
InputStreamReader inputReader = new InputStreamRead
- Hadoop中小规模集群的并行计算缺陷
datamachine
mapreducehadoop并行计算
注:写这篇文章的初衷是因为Hadoop炒得有点太热,很多用户现有数据规模并不适用于Hadoop,但迫于扩容压力和去IOE(Hadoop的廉价扩展的确非常有吸引力)而尝试。尝试永远是件正确的事儿,但有时候不用太突进,可以调优或调需求,发挥现有系统的最大效用为上策。
-----------------------------------------------------------------
- 小学4年级英语单词背诵第二课
dcj3sjt126com
englishword
egg 蛋
twenty 二十
any 任何
well 健康的,好
twelve 十二
farm 农场
every 每一个
back 向后,回
fast 快速的
whose 谁的
much 许多
flower 花
watch 手表
very 非常,很
sport 运动
Chinese 中国的
- 自己实践了github的webhooks, linux上面的权限需要注意
dcj3sjt126com
githubwebhook
环境, 阿里云服务器
1. 本地创建项目, push到github服务器上面
2. 生成www用户的密钥
sudo -u www ssh-keygen -t rsa -C "
[email protected]"
3. 将密钥添加到github帐号的SSH_KEYS里面
3. 用www用户执行克隆, 源使
- Java冒泡排序
蕃薯耀
冒泡排序Java冒泡排序Java排序
冒泡排序
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 10:40:14 星期二
http://fanshuyao.iteye.com/
- Excle读取数据转换为实体List【基于apache-poi】
hanqunfeng
apache
1.依赖apache-poi
2.支持xls和xlsx
3.支持按属性名称绑定数据值
4.支持从指定行、列开始读取
5.支持同时读取多个sheet
6.具体使用方式参见org.cpframework.utils.excelreader.CP_ExcelReaderUtilTest.java
比如:
Str
- 3个处于草稿阶段的Javascript API介绍
jackyrong
JavaScript
原文:
http://www.sitepoint.com/3-new-javascript-apis-may-want-follow/?utm_source=html5weekly&utm_medium=email
本文中,介绍3个仍然处于草稿阶段,但应该值得关注的Javascript API.
1) Web Alarm API
&
- 6个创建Web应用程序的高效PHP框架
lampcy
Web框架PHP
以下是创建Web应用程序的PHP框架,有coder bay网站整理推荐:
1. CakePHP
CakePHP是一个PHP快速开发框架,它提供了一个用于开发、维护和部署应用程序的可扩展体系。CakePHP使用了众所周知的设计模式,如MVC和ORM,降低了开发成本,并减少了开发人员写代码的工作量。
2. CodeIgniter
CodeIgniter是一个非常小且功能强大的PHP框架,适合需
- 评"救市后中国股市新乱象泛起"谣言
nannan408
首先来看百度百家一位易姓作者的新闻:
三个多星期来股市持续暴跌,跌得投资者及上市公司都处于极度的恐慌和焦虑中,都要寻找自保及规避风险的方式。面对股市之危机,政府突然进入市场救市,希望以此来重建市场信心,以此来扭转股市持续暴跌的预期。而政府进入市场后,由于市场运作方式发生了巨大变化,投资者及上市公司为了自保及为了应对这种变化,中国股市新的乱象也自然产生。
首先,中国股市这两天
- 页面全屏遮罩的实现 方式
Rainbow702
htmlcss遮罩mask
之前做了一个页面,在点击了某个按钮之后,要求页面出现一个全屏遮罩,一开始使用了position:absolute来实现的。当时因为画面大小是固定的,不可以resize的,所以,没有发现问题。
最近用了同样的做法做了一个遮罩,但是画面是可以进行resize的,所以就发现了一个问题,当画面被reisze到浏览器出现了滚动条的时候,就发现,用absolute 的做法是有问题的。后来改成fixed定位就
- 关于angularjs的点滴
tntxia
AngularJS
angular是一个新兴的JS框架,和以往的框架不同的事,Angularjs更注重于js的建模,管理,同时也提供大量的组件帮助用户组建商业化程序,是一种值得研究的JS框架。
Angularjs使我们可以使用MVC的模式来写JS。Angularjs现在由谷歌来维护。
这里我们来简单的探讨一下它的应用。
首先使用Angularjs我
- Nutz--->>反复新建ioc容器的后果
xiaoxiao1992428
DAOmvcIOCnutz
问题:
public class DaoZ {
public static Dao dao() { // 每当需要使用dao的时候就取一次
Ioc ioc = new NutIoc(new JsonLoader("dao.js"));
return ioc.get(