2.RDD概述
2.1什么是RDD

RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变、可分区、里面的元素可并行计算的集合。RDD具有数据流模型的特点:自动容错、位置感知性调度和可伸缩性。RDD允许用户在执行多个查询时显式地将数据缓存在内存中,后续的查询能够重用这些数据,这极大地提升了查询速度。

Dataset:一个数据集合,用于存放数据的。

Distributed:RDD中的数据是分布式存储的,可用于分布式计算。

Resilient:RDD中的数据可以存储在内存中或者磁盘中。

2.2RDD的属性
SparkRDD之弹性分布式数据集RDD_第1张图片
1) A list of partitions :一个分区(Partition)列表,数据集的基本组成单位。

        对于RDD来说,每个分区都会被一个计算任务处理,并决定并行计算的粒度。用户可以在创建RDD时指定RDD的分区个数,如果没有指定,那么就会采用默认值。(比如:读取HDFS上数据文件产生的RDD分区数跟block的个数相等)

2)A function for computing each split :一个计算每个分区的函数。

        Spark中RDD的计算是以分区为单位的,每个RDD都会实现compute函数以达到这个目的。

3)A list of dependencies on other RDDs:一个RDD会依赖于其他多个RDD,RDD之间的依赖关系。

        RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。

4)Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned):一个Partitioner,即RDD的分区函数(可选项)。

        当前Spark中实现了两种类型的分区函数,一个是基于哈希的HashPartitioner,另外一 个是基于范围的RangePartitioner。只有对于key-value的RDD,才会有Partitioner,非key-value的RDD的Parititioner的值是None。Partitioner函数决定了parent RDD Shuffle输出时的分区数量。

5)Optionally, a list of preferred locations to compute each split on (e.g. block locations for an HDFS file):一个列表,存储每个Partition的优先位置(可选项)。

        对于一个HDFS文件来说,这个列表保存的就是每个Partition所在的块的位置。按照“移动数据不如移动计算”的理念,Spark在进行任务调度的时候,会尽可能地将计算任务分配到其所要处理数据块的存储位置(spark进行任务分配的时候尽可能选择那些存有数据的worker节点来进行任务计算)。

2.3为什么会产生RDD?

(1) 传统的MapReduce虽然具有自动容错、平衡负载和可拓展性的优点,但是其最大缺点是采用非循环式的数据流模型,使得在迭代计算中要进行大量的磁盘IO操作。RDD正是解决这一缺点的抽象方法。

(2)        RDD是Spark提供的最重要的抽象的概念,它是一种具有容错机制的特殊集合,可以分布在集群的节点上,以函数式编程来操作集合,进行各种并行操作。可以把RDD的结果数据进行缓存,方便进行多次重用,避免重复计算。

2.4RDD在Spark中的地位及作用

(1) 为什么会有Spark?

因为传统的并行计算模型无法有效的解决迭代计算(iterative)和交互式计算(interactive);而Spark的使命便是解决这两个问题,这也是他存在的价值和理由。

(2) Spark如何解决迭代计算?

其主要实现思想就是RDD,把所有计算的数据保存在分布式的内存中。迭代计算通常情况下都是对同一个数据集做反复的迭代计算,数据在内存中将大大提升IO操作。这也是Spark涉及的核心:内存计算。

(3) Spark如何实现交互式计算?

因为Spark是用scala语言实现的,Spark和scala能够紧密的集成,所以Spark可以完美的运用scala的解释器,使得其中的scala可以向操作本地集合对象一样轻松操作分布式数据集。

(4) Spark和RDD的关系?

RDD是一种具有容错性、基于内存计算的抽象方法,RDD是Spark Core的底层核心,Spark则是这个抽象方法的实现。

3. 创建RDD

1)由一个已经存在的Scala集合创建。

val rdd1 = sc.parallelize(Array(1,2,3,4,5,6,7,8))

2)由外部存储系统的文件创建。包括本地的文件系统,还有所有Hadoop支持的数据集,比如HDFS、Cassandra、HBase等。

val rdd2 = sc.textFile("/words.txt")

3)已有的RDD经过算子转换生成新的RDD

val rdd3=rdd2.flatMap(_.split(" "))