聊聊netty的ResourceLeakDetector

本文主要研究一下netty的ResourceLeakDetector

LEAK异常

2019-04-02 15:23:17.026 ERROR 1 --- [reactor-http-epoll-2] io.netty.util.ResourceLeakDetector       : LEAK: ByteBuf.release() was not called before it's garbage-collected. See http://netty.io/wiki/reference-counted-objects.html for more information.
Recent access records: 
#1:
    io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:286)
    io.netty.channel.CombinedChannelDuplexHandler.channelRead(CombinedChannelDuplexHandler.java:253)
    io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
    io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
    io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340)
    io.netty.channel.DefaultChannelPipeline$HeadContext.channelRead(DefaultChannelPipeline.java:1408)
    io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
    io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
    io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:930)
    io.netty.channel.epoll.AbstractEpollStreamChannel$EpollStreamUnsafe.epollInReady(AbstractEpollStreamChannel.java:799)
    io.netty.channel.epoll.EpollEventLoop.processReady(EpollEventLoop.java:427)
    io.netty.channel.epoll.EpollEventLoop.run(EpollEventLoop.java:328)
    io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:905)
    java.base/java.lang.Thread.run(Thread.java:835)
#2:
    io.netty.buffer.AdvancedLeakAwareByteBuf.forEachByte(AdvancedLeakAwareByteBuf.java:670)
    io.netty.handler.codec.http.HttpObjectDecoder$HeaderParser.parse(HttpObjectDecoder.java:801)
    io.netty.handler.codec.http.HttpObjectDecoder.readHeaders(HttpObjectDecoder.java:601)
    io.netty.handler.codec.http.HttpObjectDecoder.decode(HttpObjectDecoder.java:227)
    io.netty.handler.codec.http.HttpClientCodec$Decoder.decode(HttpClientCodec.java:202)
    io.netty.handler.codec.ByteToMessageDecoder.decodeRemovalReentryProtection(ByteToMessageDecoder.java:502)
    io.netty.handler.codec.ByteToMessageDecoder.callDecode(ByteToMessageDecoder.java:441)
    io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:278)
    io.netty.channel.CombinedChannelDuplexHandler.channelRead(CombinedChannelDuplexHandler.java:253)
    io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
    io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
    io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340)
    io.netty.channel.DefaultChannelPipeline$HeadContext.channelRead(DefaultChannelPipeline.java:1408)
    io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
    io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
    io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:930)
    io.netty.channel.epoll.AbstractEpollStreamChannel$EpollStreamUnsafe.epollInReady(AbstractEpollStreamChannel.java:799)
    io.netty.channel.epoll.EpollEventLoop.processReady(EpollEventLoop.java:427)
    io.netty.channel.epoll.EpollEventLoop.run(EpollEventLoop.java:328)
    io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:905)
    java.base/java.lang.Thread.run(Thread.java:835)
#3:
    io.netty.buffer.AdvancedLeakAwareByteBuf.forEachByte(AdvancedLeakAwareByteBuf.java:670)
    io.netty.handler.codec.http.HttpObjectDecoder$HeaderParser.parse(HttpObjectDecoder.java:801)
    io.netty.handler.codec.http.HttpObjectDecoder.readHeaders(HttpObjectDecoder.java:581)
    io.netty.handler.codec.http.HttpObjectDecoder.decode(HttpObjectDecoder.java:227)
    io.netty.handler.codec.http.HttpClientCodec$Decoder.decode(HttpClientCodec.java:202)
    io.netty.handler.codec.ByteToMessageDecoder.decodeRemovalReentryProtection(ByteToMessageDecoder.java:502)
    io.netty.handler.codec.ByteToMessageDecoder.callDecode(ByteToMessageDecoder.java:441)
    io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:278)
    io.netty.channel.CombinedChannelDuplexHandler.channelRead(CombinedChannelDuplexHandler.java:253)
    io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
    io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
    io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340)
    io.netty.channel.DefaultChannelPipeline$HeadContext.channelRead(DefaultChannelPipeline.java:1408)
    io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
    io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
    io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:930)
    io.netty.channel.epoll.AbstractEpollStreamChannel$EpollStreamUnsafe.epollInReady(AbstractEpollStreamChannel.java:799)
    io.netty.channel.epoll.EpollEventLoop.processReady(EpollEventLoop.java:427)
    io.netty.channel.epoll.EpollEventLoop.run(EpollEventLoop.java:328)
    io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:905)
    java.base/java.lang.Thread.run(Thread.java:835)
#4:
    io.netty.buffer.AdvancedLeakAwareByteBuf.forEachByte(AdvancedLeakAwareByteBuf.java:670)
    io.netty.handler.codec.http.HttpObjectDecoder$HeaderParser.parse(HttpObjectDecoder.java:801)
    io.netty.handler.codec.http.HttpObjectDecoder$LineParser.parse(HttpObjectDecoder.java:850)
    io.netty.handler.codec.http.HttpObjectDecoder.decode(HttpObjectDecoder.java:208)
    io.netty.handler.codec.http.HttpClientCodec$Decoder.decode(HttpClientCodec.java:202)
    io.netty.handler.codec.ByteToMessageDecoder.decodeRemovalReentryProtection(ByteToMessageDecoder.java:502)
    io.netty.handler.codec.ByteToMessageDecoder.callDecode(ByteToMessageDecoder.java:441)
    io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:278)
    io.netty.channel.CombinedChannelDuplexHandler.channelRead(CombinedChannelDuplexHandler.java:253)
    io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
    io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
    io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340)
    io.netty.channel.DefaultChannelPipeline$HeadContext.channelRead(DefaultChannelPipeline.java:1408)
    io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
    io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
    io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:930)
    io.netty.channel.epoll.AbstractEpollStreamChannel$EpollStreamUnsafe.epollInReady(AbstractEpollStreamChannel.java:799)
    io.netty.channel.epoll.EpollEventLoop.processReady(EpollEventLoop.java:427)
    io.netty.channel.epoll.EpollEventLoop.run(EpollEventLoop.java:328)
    io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:905)
    java.base/java.lang.Thread.run(Thread.java:835)
#5:
    io.netty.buffer.AdvancedLeakAwareByteBuf.getUnsignedByte(AdvancedLeakAwareByteBuf.java:160)
    io.netty.handler.codec.http.HttpObjectDecoder.skipControlCharacters(HttpObjectDecoder.java:566)
    io.netty.handler.codec.http.HttpObjectDecoder.decode(HttpObjectDecoder.java:202)
    io.netty.handler.codec.http.HttpClientCodec$Decoder.decode(HttpClientCodec.java:202)
    io.netty.handler.codec.ByteToMessageDecoder.decodeRemovalReentryProtection(ByteToMessageDecoder.java:502)
    io.netty.handler.codec.ByteToMessageDecoder.callDecode(ByteToMessageDecoder.java:441)
    io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:278)
    io.netty.channel.CombinedChannelDuplexHandler.channelRead(CombinedChannelDuplexHandler.java:253)
    io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
    io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
    io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340)
    io.netty.channel.DefaultChannelPipeline$HeadContext.channelRead(DefaultChannelPipeline.java:1408)
    io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
    io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
    io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:930)
    io.netty.channel.epoll.AbstractEpollStreamChannel$EpollStreamUnsafe.epollInReady(AbstractEpollStreamChannel.java:799)
    io.netty.channel.epoll.EpollEventLoop.processReady(EpollEventLoop.java:427)
    io.netty.channel.epoll.EpollEventLoop.run(EpollEventLoop.java:328)
    io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:905)
    java.base/java.lang.Thread.run(Thread.java:835)
#6:
    Hint: 'reactor.left.httpCodec' will handle the message from this point.
    io.netty.channel.DefaultChannelPipeline.touch(DefaultChannelPipeline.java:116)
    io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:345)
    io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340)
    io.netty.channel.DefaultChannelPipeline$HeadContext.channelRead(DefaultChannelPipeline.java:1408)
    io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
    io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
    io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:930)
    io.netty.channel.epoll.AbstractEpollStreamChannel$EpollStreamUnsafe.epollInReady(AbstractEpollStreamChannel.java:799)
    io.netty.channel.epoll.EpollEventLoop.processReady(EpollEventLoop.java:427)
    io.netty.channel.epoll.EpollEventLoop.run(EpollEventLoop.java:328)
    io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:905)
    java.base/java.lang.Thread.run(Thread.java:835)
#7:
    Hint: 'DefaultChannelPipeline$HeadContext#0' will handle the message from this point.
    io.netty.channel.DefaultChannelPipeline.touch(DefaultChannelPipeline.java:116)
    io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:345)
    io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:930)
    io.netty.channel.epoll.AbstractEpollStreamChannel$EpollStreamUnsafe.epollInReady(AbstractEpollStreamChannel.java:799)
    io.netty.channel.epoll.EpollEventLoop.processReady(EpollEventLoop.java:427)
    io.netty.channel.epoll.EpollEventLoop.run(EpollEventLoop.java:328)
    io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:905)
    java.base/java.lang.Thread.run(Thread.java:835)
Created at:
    io.netty.buffer.PooledByteBufAllocator.newDirectBuffer(PooledByteBufAllocator.java:339)
    io.netty.buffer.AbstractByteBufAllocator.directBuffer(AbstractByteBufAllocator.java:185)
    io.netty.buffer.AbstractByteBufAllocator.directBuffer(AbstractByteBufAllocator.java:176)
    io.netty.channel.unix.PreferredDirectByteBufAllocator.ioBuffer(PreferredDirectByteBufAllocator.java:53)
    io.netty.channel.DefaultMaxMessagesRecvByteBufAllocator$MaxMessageHandle.allocate(DefaultMaxMessagesRecvByteBufAllocator.java:114)
    io.netty.channel.epoll.EpollRecvByteAllocatorHandle.allocate(EpollRecvByteAllocatorHandle.java:77)
    io.netty.channel.epoll.AbstractEpollStreamChannel$EpollStreamUnsafe.epollInReady(AbstractEpollStreamChannel.java:784)
    io.netty.channel.epoll.EpollEventLoop.processReady(EpollEventLoop.java:427)
    io.netty.channel.epoll.EpollEventLoop.run(EpollEventLoop.java:328)
    io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:905)
    java.base/java.lang.Thread.run(Thread.java:835)
: 9 leak records were discarded because the leak record count is targeted to 4. Use system property io.netty.leakDetection.targetRecords to increase the limit.

ResourceLeakDetector

netty-common-4.1.33.Final-sources.jar!/io/netty/util/ResourceLeakDetector.java

public class ResourceLeakDetector {

    private static final String PROP_LEVEL_OLD = "io.netty.leakDetectionLevel";
    private static final String PROP_LEVEL = "io.netty.leakDetection.level";
    private static final Level DEFAULT_LEVEL = Level.SIMPLE;

    private static final String PROP_TARGET_RECORDS = "io.netty.leakDetection.targetRecords";
    private static final int DEFAULT_TARGET_RECORDS = 4;

    private static final String PROP_SAMPLING_INTERVAL = "io.netty.leakDetection.samplingInterval";
    // There is a minor performance benefit in TLR if this is a power of 2.
    private static final int DEFAULT_SAMPLING_INTERVAL = 128;

    private static final int TARGET_RECORDS;
    static final int SAMPLING_INTERVAL;

    /**
     * Represents the level of resource leak detection.
     */
    public enum Level {
        /**
         * Disables resource leak detection.
         */
        DISABLED,
        /**
         * Enables simplistic sampling resource leak detection which reports there is a leak or not,
         * at the cost of small overhead (default).
         */
        SIMPLE,
        /**
         * Enables advanced sampling resource leak detection which reports where the leaked object was accessed
         * recently at the cost of high overhead.
         */
        ADVANCED,
        /**
         * Enables paranoid resource leak detection which reports where the leaked object was accessed recently,
         * at the cost of the highest possible overhead (for testing purposes only).
         */
        PARANOID;

        /**
         * Returns level based on string value. Accepts also string that represents ordinal number of enum.
         *
         * @param levelStr - level string : DISABLED, SIMPLE, ADVANCED, PARANOID. Ignores case.
         * @return corresponding level or SIMPLE level in case of no match.
         */
        static Level parseLevel(String levelStr) {
            String trimmedLevelStr = levelStr.trim();
            for (Level l : values()) {
                if (trimmedLevelStr.equalsIgnoreCase(l.name()) || trimmedLevelStr.equals(String.valueOf(l.ordinal()))) {
                    return l;
                }
            }
            return DEFAULT_LEVEL;
        }
    }

    private static Level level;

    private static final InternalLogger logger = InternalLoggerFactory.getInstance(ResourceLeakDetector.class);

    static {
        final boolean disabled;
        if (SystemPropertyUtil.get("io.netty.noResourceLeakDetection") != null) {
            disabled = SystemPropertyUtil.getBoolean("io.netty.noResourceLeakDetection", false);
            logger.debug("-Dio.netty.noResourceLeakDetection: {}", disabled);
            logger.warn(
                    "-Dio.netty.noResourceLeakDetection is deprecated. Use '-D{}={}' instead.",
                    PROP_LEVEL, DEFAULT_LEVEL.name().toLowerCase());
        } else {
            disabled = false;
        }

        Level defaultLevel = disabled? Level.DISABLED : DEFAULT_LEVEL;

        // First read old property name
        String levelStr = SystemPropertyUtil.get(PROP_LEVEL_OLD, defaultLevel.name());

        // If new property name is present, use it
        levelStr = SystemPropertyUtil.get(PROP_LEVEL, levelStr);
        Level level = Level.parseLevel(levelStr);

        TARGET_RECORDS = SystemPropertyUtil.getInt(PROP_TARGET_RECORDS, DEFAULT_TARGET_RECORDS);
        SAMPLING_INTERVAL = SystemPropertyUtil.getInt(PROP_SAMPLING_INTERVAL, DEFAULT_SAMPLING_INTERVAL);

        ResourceLeakDetector.level = level;
        if (logger.isDebugEnabled()) {
            logger.debug("-D{}: {}", PROP_LEVEL, level.name().toLowerCase());
            logger.debug("-D{}: {}", PROP_TARGET_RECORDS, TARGET_RECORDS);
        }
    }

    /**
     * @deprecated Use {@link #setLevel(Level)} instead.
     */
    @Deprecated
    public static void setEnabled(boolean enabled) {
        setLevel(enabled? Level.SIMPLE : Level.DISABLED);
    }

    /**
     * Returns {@code true} if resource leak detection is enabled.
     */
    public static boolean isEnabled() {
        return getLevel().ordinal() > Level.DISABLED.ordinal();
    }

    /**
     * Sets the resource leak detection level.
     */
    public static void setLevel(Level level) {
        if (level == null) {
            throw new NullPointerException("level");
        }
        ResourceLeakDetector.level = level;
    }

    /**
     * Returns the current resource leak detection level.
     */
    public static Level getLevel() {
        return level;
    }

    /** the collection of active resources */
    private final Set> allLeaks =
            Collections.newSetFromMap(new ConcurrentHashMap, Boolean>());

    private final ReferenceQueue refQueue = new ReferenceQueue();
    private final ConcurrentMap reportedLeaks = PlatformDependent.newConcurrentHashMap();

    private final String resourceType;
    private final int samplingInterval;

    //......

    /**
     * Creates a new {@link ResourceLeakTracker} which is expected to be closed via
     * {@link ResourceLeakTracker#close(Object)} when the related resource is deallocated.
     *
     * @return the {@link ResourceLeakTracker} or {@code null}
     */
    @SuppressWarnings("unchecked")
    public final ResourceLeakTracker track(T obj) {
        return track0(obj);
    }

    private DefaultResourceLeak track0(T obj) {
        Level level = ResourceLeakDetector.level;
        if (level == Level.DISABLED) {
            return null;
        }

        if (level.ordinal() < Level.PARANOID.ordinal()) {
            if ((PlatformDependent.threadLocalRandom().nextInt(samplingInterval)) == 0) {
                reportLeak();
                return new DefaultResourceLeak(obj, refQueue, allLeaks);
            }
            return null;
        }
        reportLeak();
        return new DefaultResourceLeak(obj, refQueue, allLeaks);
    }

    private void reportLeak() {
        if (!logger.isErrorEnabled()) {
            clearRefQueue();
            return;
        }

        // Detect and report previous leaks.
        for (;;) {
            @SuppressWarnings("unchecked")
            DefaultResourceLeak ref = (DefaultResourceLeak) refQueue.poll();
            if (ref == null) {
                break;
            }

            if (!ref.dispose()) {
                continue;
            }

            String records = ref.toString();
            if (reportedLeaks.putIfAbsent(records, Boolean.TRUE) == null) {
                if (records.isEmpty()) {
                    reportUntracedLeak(resourceType);
                } else {
                    reportTracedLeak(resourceType, records);
                }
            }
        }
    }

    /**
     * This method is called when a traced leak is detected. It can be overridden for tracking how many times leaks
     * have been detected.
     */
    protected void reportTracedLeak(String resourceType, String records) {
        logger.error(
                "LEAK: {}.release() was not called before it's garbage-collected. " +
                "See http://netty.io/wiki/reference-counted-objects.html for more information.{}",
                resourceType, records);
    }

    /**
     * This method is called when an untraced leak is detected. It can be overridden for tracking how many times leaks
     * have been detected.
     */
    protected void reportUntracedLeak(String resourceType) {
        logger.error("LEAK: {}.release() was not called before it's garbage-collected. " +
                "Enable advanced leak reporting to find out where the leak occurred. " +
                "To enable advanced leak reporting, " +
                "specify the JVM option '-D{}={}' or call {}.setLevel() " +
                "See http://netty.io/wiki/reference-counted-objects.html for more information.",
                resourceType, PROP_LEVEL, Level.ADVANCED.name().toLowerCase(), simpleClassName(this));
    }

    //......
} 
 
  • ResourceLeakDetector使用Level枚举定义了四种不同的leak detection级别,分别是DISABLED、SIMPLE、ADVANCED、PARANOID;默认level为SIMPLE;可以使用-Dio.netty.leakDetection.level=advanced来进行设置
  • ResourceLeakDetector的静态代码块会读取io.netty.noResourceLeakDetection系统属性,如果显示设置为false,则变更defaultLevel为DISABLED;如果没有设置,则默认disabled为false,defaultLevel为SIMPLE;ResourceLeakDetector还有TARGET_RECORDS(io.netty.leakDetection.targetRecords)及SAMPLING_INTERVAL(io.netty.leakDetection.samplingInterval)两个属性,其中targetRecords默认为4,samplingInterval默认为128
  • ResourceLeakDetector提供了track方法用于创建ResourceLeakTracker;track方法内部调用track0方法,如果level为PARANOID则立即调用reportLeak,创建DefaultResourceLeak,否则利用随机数来判断(PlatformDependent.threadLocalRandom().nextInt(samplingInterval)) == 0)是否调用reportLeak并创建DefaultResourceLeak;reportLeak方法有个for循环,不断从refQueue取DefaultResourceLeak,然后调用reportUntracedLeak或者reportTracedLeak进行error

DefaultResourceLeak

netty-common-4.1.33.Final-sources.jar!/io/netty/util/ResourceLeakDetector.java

    private static final class DefaultResourceLeak
            extends WeakReference implements ResourceLeakTracker, ResourceLeak {

        @SuppressWarnings("unchecked") // generics and updaters do not mix.
        private static final AtomicReferenceFieldUpdater, Record> headUpdater =
                (AtomicReferenceFieldUpdater)
                        AtomicReferenceFieldUpdater.newUpdater(DefaultResourceLeak.class, Record.class, "head");

        @SuppressWarnings("unchecked") // generics and updaters do not mix.
        private static final AtomicIntegerFieldUpdater> droppedRecordsUpdater =
                (AtomicIntegerFieldUpdater)
                        AtomicIntegerFieldUpdater.newUpdater(DefaultResourceLeak.class, "droppedRecords");

        @SuppressWarnings("unused")
        private volatile Record head;
        @SuppressWarnings("unused")
        private volatile int droppedRecords;

        private final Set> allLeaks;
        private final int trackedHash;

        DefaultResourceLeak(
                Object referent,
                ReferenceQueue refQueue,
                Set> allLeaks) {
            super(referent, refQueue);

            assert referent != null;

            // Store the hash of the tracked object to later assert it in the close(...) method.
            // It's important that we not store a reference to the referent as this would disallow it from
            // be collected via the WeakReference.
            trackedHash = System.identityHashCode(referent);
            allLeaks.add(this);
            // Create a new Record so we always have the creation stacktrace included.
            headUpdater.set(this, new Record(Record.BOTTOM));
            this.allLeaks = allLeaks;
        }

        @Override
        public void record() {
            record0(null);
        }

        @Override
        public void record(Object hint) {
            record0(hint);
        }

        /**
         * This method works by exponentially backing off as more records are present in the stack. Each record has a
         * 1 / 2^n chance of dropping the top most record and replacing it with itself. This has a number of convenient
         * properties:
         *
         * 
    *
  1. The current record is always recorded. This is due to the compare and swap dropping the top most * record, rather than the to-be-pushed record. *
  2. The very last access will always be recorded. This comes as a property of 1. *
  3. It is possible to retain more records than the target, based upon the probability distribution. *
  4. It is easy to keep a precise record of the number of elements in the stack, since each element has to * know how tall the stack is. *
* * In this particular implementation, there are also some advantages. A thread local random is used to decide * if something should be recorded. This means that if there is a deterministic access pattern, it is now * possible to see what other accesses occur, rather than always dropping them. Second, after * {@link #TARGET_RECORDS} accesses, backoff occurs. This matches typical access patterns, * where there are either a high number of accesses (i.e. a cached buffer), or low (an ephemeral buffer), but * not many in between. * * The use of atomics avoids serializing a high number of accesses, when most of the records will be thrown * away. High contention only happens when there are very few existing records, which is only likely when the * object isn't shared! If this is a problem, the loop can be aborted and the record dropped, because another * thread won the race. */ private void record0(Object hint) { // Check TARGET_RECORDS > 0 here to avoid similar check before remove from and add to lastRecords if (TARGET_RECORDS > 0) { Record oldHead; Record prevHead; Record newHead; boolean dropped; do { if ((prevHead = oldHead = headUpdater.get(this)) == null) { // already closed. return; } final int numElements = oldHead.pos + 1; if (numElements >= TARGET_RECORDS) { final int backOffFactor = Math.min(numElements - TARGET_RECORDS, 30); if (dropped = PlatformDependent.threadLocalRandom().nextInt(1 << backOffFactor) != 0) { prevHead = oldHead.next; } } else { dropped = false; } newHead = hint != null ? new Record(prevHead, hint) : new Record(prevHead); } while (!headUpdater.compareAndSet(this, oldHead, newHead)); if (dropped) { droppedRecordsUpdater.incrementAndGet(this); } } } boolean dispose() { clear(); return allLeaks.remove(this); } @Override public boolean close() { if (allLeaks.remove(this)) { // Call clear so the reference is not even enqueued. clear(); headUpdater.set(this, null); return true; } return false; } @Override public boolean close(T trackedObject) { // Ensure that the object that was tracked is the same as the one that was passed to close(...). assert trackedHash == System.identityHashCode(trackedObject); try { return close(); } finally { // This method will do `synchronized(trackedObject)` and we should be sure this will not cause deadlock. // It should not, because somewhere up the callstack should be a (successful) `trackedObject.release`, // therefore it is unreasonable that anyone else, anywhere, is holding a lock on the trackedObject. // (Unreasonable but possible, unfortunately.) reachabilityFence0(trackedObject); } } /** * Ensures that the object referenced by the given reference remains * strongly reachable, * regardless of any prior actions of the program that might otherwise cause * the object to become unreachable; thus, the referenced object is not * reclaimable by garbage collection at least until after the invocation of * this method. * *

Recent versions of the JDK have a nasty habit of prematurely deciding objects are unreachable. * see: https://stackoverflow.com/questions/26642153/finalize-called-on-strongly-reachable-object-in-java-8 * The Java 9 method Reference.reachabilityFence offers a solution to this problem. * *

This method is always implemented as a synchronization on {@code ref}, not as * {@code Reference.reachabilityFence} for consistency across platforms and to allow building on JDK 6-8. * It is the caller's responsibility to ensure that this synchronization will not cause deadlock. * * @param ref the reference. If {@code null}, this method has no effect. * @see java.lang.ref.Reference#reachabilityFence */ private static void reachabilityFence0(Object ref) { if (ref != null) { // Empty synchronized is ok: https://stackoverflow.com/a/31933260/1151521 synchronized (ref) { } } } @Override public String toString() { Record oldHead = headUpdater.getAndSet(this, null); if (oldHead == null) { // Already closed return EMPTY_STRING; } final int dropped = droppedRecordsUpdater.get(this); int duped = 0; int present = oldHead.pos + 1; // Guess about 2 kilobytes per stack trace StringBuilder buf = new StringBuilder(present * 2048).append(NEWLINE); buf.append("Recent access records: ").append(NEWLINE); int i = 1; Set seen = new HashSet(present); for (; oldHead != Record.BOTTOM; oldHead = oldHead.next) { String s = oldHead.toString(); if (seen.add(s)) { if (oldHead.next == Record.BOTTOM) { buf.append("Created at:").append(NEWLINE).append(s); } else { buf.append('#').append(i++).append(':').append(NEWLINE).append(s); } } else { duped++; } } if (duped > 0) { buf.append(": ") .append(duped) .append(" leak records were discarded because they were duplicates") .append(NEWLINE); } if (dropped > 0) { buf.append(": ") .append(dropped) .append(" leak records were discarded because the leak record count is targeted to ") .append(TARGET_RECORDS) .append(". Use system property ") .append(PROP_TARGET_RECORDS) .append(" to increase the limit.") .append(NEWLINE); } buf.setLength(buf.length() - NEWLINE.length()); return buf.toString(); } }

  • DefaultResourceLeak是ResourceLeakDetector定义的私有静态类,它继承了WeakReference类,同时实现了ResourceLeakTracker(定义了record、close方法)接口;record方法内部调用的是record0方法,它会更新newHead为新的Record;close方法会移除allLeaks,allLeaks由ResourceLeakDetector创建DefaultResourceLeak时传入,每创建一个DefaultResourceLeak,DefaultResourceLeak会把自己加入到allLeaks中

SimpleLeakAwareByteBuf

netty-netty-4.1.33.Final/buffer/src/main/java/io/netty/buffer/SimpleLeakAwareByteBuf.java

class SimpleLeakAwareByteBuf extends WrappedByteBuf {

    /**
     * This object's is associated with the {@link ResourceLeakTracker}. When {@link ResourceLeakTracker#close(Object)}
     * is called this object will be used as the argument. It is also assumed that this object is used when
     * {@link ResourceLeakDetector#track(Object)} is called to create {@link #leak}.
     */
    private final ByteBuf trackedByteBuf;
    final ResourceLeakTracker leak;

    SimpleLeakAwareByteBuf(ByteBuf wrapped, ByteBuf trackedByteBuf, ResourceLeakTracker leak) {
        super(wrapped);
        this.trackedByteBuf = ObjectUtil.checkNotNull(trackedByteBuf, "trackedByteBuf");
        this.leak = ObjectUtil.checkNotNull(leak, "leak");
    }

    SimpleLeakAwareByteBuf(ByteBuf wrapped, ResourceLeakTracker leak) {
        this(wrapped, wrapped, leak);
    }

    //......

    @Override
    public boolean release() {
        if (super.release()) {
            closeLeak();
            return true;
        }
        return false;
    }

    @Override
    public boolean release(int decrement) {
        if (super.release(decrement)) {
            closeLeak();
            return true;
        }
        return false;
    }

    private void closeLeak() {
        // Close the ResourceLeakTracker with the tracked ByteBuf as argument. This must be the same that was used when
        // calling DefaultResourceLeak.track(...).
        boolean closed = leak.close(trackedByteBuf);
        assert closed;
    }

    private ByteBuf unwrappedDerived(ByteBuf derived) {
        // We only need to unwrap SwappedByteBuf implementations as these will be the only ones that may end up in
        // the AbstractLeakAwareByteBuf implementations beside slices / duplicates and "real" buffers.
        ByteBuf unwrappedDerived = unwrapSwapped(derived);

        if (unwrappedDerived instanceof AbstractPooledDerivedByteBuf) {
            // Update the parent to point to this buffer so we correctly close the ResourceLeakTracker.
            ((AbstractPooledDerivedByteBuf) unwrappedDerived).parent(this);

            ResourceLeakTracker newLeak = AbstractByteBuf.leakDetector.track(derived);
            if (newLeak == null) {
                // No leak detection, just return the derived buffer.
                return derived;
            }
            return newLeakAwareByteBuf(derived, newLeak);
        }
        return newSharedLeakAwareByteBuf(derived);
    }

    //......
}
  • SimpleLeakAwareByteBuf继承了WrappedByteBuf,它的构造器要求传入ResourceLeakTracker
  • SimpleLeakAwareByteBuf覆盖了WrappedByteBuf的retainedSlice、retainedDuplicate、readRetainedSlice方法,它们内部都会调用unwrappedDerived方法,unwrappedDerived方法在unwrappedDerived对象是AbstractPooledDerivedByteBuf类型时会调用AbstractByteBuf.leakDetector.track进行track
  • SimpleLeakAwareByteBuf也覆盖了WrappedByteBuf的release方法,在调用父类release成功时会再调用closeLeak方法,使用leak.close(trackedByteBuf)来释放trackedByteBuf

AdvancedLeakAwareByteBuf

netty-netty-4.1.33.Final/buffer/src/main/java/io/netty/buffer/AdvancedLeakAwareByteBuf.java

final class AdvancedLeakAwareByteBuf extends SimpleLeakAwareByteBuf {

    private static final String PROP_ACQUIRE_AND_RELEASE_ONLY = "io.netty.leakDetection.acquireAndReleaseOnly";
    private static final boolean ACQUIRE_AND_RELEASE_ONLY;

    private static final InternalLogger logger = InternalLoggerFactory.getInstance(AdvancedLeakAwareByteBuf.class);

    static {
        ACQUIRE_AND_RELEASE_ONLY = SystemPropertyUtil.getBoolean(PROP_ACQUIRE_AND_RELEASE_ONLY, false);

        if (logger.isDebugEnabled()) {
            logger.debug("-D{}: {}", PROP_ACQUIRE_AND_RELEASE_ONLY, ACQUIRE_AND_RELEASE_ONLY);
        }

        ResourceLeakDetector.addExclusions(
                AdvancedLeakAwareByteBuf.class, "touch", "recordLeakNonRefCountingOperation");
    }

    AdvancedLeakAwareByteBuf(ByteBuf buf, ResourceLeakTracker leak) {
        super(buf, leak);
    }

    AdvancedLeakAwareByteBuf(ByteBuf wrapped, ByteBuf trackedByteBuf, ResourceLeakTracker leak) {
        super(wrapped, trackedByteBuf, leak);
    }

    static void recordLeakNonRefCountingOperation(ResourceLeakTracker leak) {
        if (!ACQUIRE_AND_RELEASE_ONLY) {
            leak.record();
        }
    }

    //......

    @Override
    public ByteBuf order(ByteOrder endianness) {
        recordLeakNonRefCountingOperation(leak);
        return super.order(endianness);
    }

    @Override
    public ByteBuf slice() {
        recordLeakNonRefCountingOperation(leak);
        return super.slice();
    }

    @Override
    public ByteBuf slice(int index, int length) {
        recordLeakNonRefCountingOperation(leak);
        return super.slice(index, length);
    }

    //......

    @Override
    public ByteBuf retain() {
        leak.record();
        return super.retain();
    }

    @Override
    public ByteBuf retain(int increment) {
        leak.record();
        return super.retain(increment);
    }

    @Override
    public boolean release() {
        leak.record();
        return super.release();
    }

    @Override
    public boolean release(int decrement) {
        leak.record();
        return super.release(decrement);
    }

    @Override
    public ByteBuf touch() {
        leak.record();
        return this;
    }

    @Override
    public ByteBuf touch(Object hint) {
        leak.record(hint);
        return this;
    }

    //......
}
  • AdvancedLeakAwareByteBuf继承了SimpleLeakAwareByteBuf,它对方法进行了覆盖,这些覆盖的方法要么内部通过recordLeakNonRefCountingOperation调用leak.record,要么直接调用leak.record

小结

  • ResourceLeakDetector使用Level枚举定义了四种不同的leak detection级别,分别是DISABLED、SIMPLE、ADVANCED、PARANOID;默认level为SIMPLE;可以使用-Dio.netty.leakDetection.level=advanced来进行设置;ResourceLeakDetector还有TARGET_RECORDS(io.netty.leakDetection.targetRecords)及SAMPLING_INTERVAL(io.netty.leakDetection.samplingInterval)两个属性,其中targetRecords默认为4,samplingInterval默认为128
  • ResourceLeakDetector提供了track方法用于创建ResourceLeakTracker;track方法内部调用track0方法,如果level为PARANOID则立即调用reportLeak,创建DefaultResourceLeak,否则利用随机数来判断(PlatformDependent.threadLocalRandom().nextInt(samplingInterval)) == 0)是否调用reportLeak并创建DefaultResourceLeak;reportLeak方法有个for循环,不断从refQueue取DefaultResourceLeak,然后调用reportUntracedLeak或者reportTracedLeak进行error
  • DefaultResourceLeak是ResourceLeakDetector定义的私有静态类,它继承了WeakReference类,同时实现了ResourceLeakTracker(定义了record、close方法)接口;record方法内部调用的是record0方法,它会更新newHead为新的Record;close方法会移除allLeaks,allLeaks由ResourceLeakDetector创建DefaultResourceLeak时传入,每创建一个DefaultResourceLeak,DefaultResourceLeak会把自己加入到allLeaks中
  • SimpleLeakAwareByteBuf继承了WrappedByteBuf,它的构造器要求传入ResourceLeakTracker;SimpleLeakAwareByteBuf覆盖了WrappedByteBuf的retainedSlice、retainedDuplicate、readRetainedSlice方法,它们内部都会调用unwrappedDerived方法,unwrappedDerived方法在unwrappedDerived对象是AbstractPooledDerivedByteBuf类型时会调用AbstractByteBuf.leakDetector.track进行track;SimpleLeakAwareByteBuf也覆盖了WrappedByteBuf的release方法,在调用父类release成功时会再调用closeLeak方法,使用leak.close(trackedByteBuf)来释放trackedByteBuf
  • AdvancedLeakAwareByteBuf继承了SimpleLeakAwareByteBuf,它对方法进行了覆盖,这些覆盖的方法要么内部通过recordLeakNonRefCountingOperation调用leak.record,要么直接调用leak.record;另外有SimpleLeakAwareCompositeByteBuf与AdvancedLeakAwareCompositeByteBuf,它们对leak detect的支持类似SimpleLeakAwareByteBuf与AdvancedLeakAwareByteBuf

doc

  • Netty 的资源泄露探测机制
  • A Netty ByteBuf Memory Leak Story and the Lessons Learned
  • In 4.0.23.Final, Seeing io.netty.util.ResourceLeakDetector - LEAK: ByteBuf.release() was not called before it's garbage-collected #2774

你可能感兴趣的:(netty)