- Hive函数大全:从核心内置函数到自定义UDF实战指南(附详细案例与总结)
一个天蝎座 白勺 程序猿
大数据开发从入门到实战合集hivehadoop数据仓库
目录背景一、Hive函数分类与核心函数表1.内置函数分类2.用户自定义函数(UDF)分类二、常用函数详解与实战案例1.数学函数2.字符串函数3.窗口函数4.自定义UDF实战三、总结与优化建议1.核心总结2.性能优化建议3.常问问题背景Hive作为Hadoop生态中最常用的数据仓库工具,其强大的函数库是高效处理和分析海量数据的核心能力之一。Hive函数分为内置函数和用户自
- hive-进阶版-1
数据牧马人
hivehadoop数据仓库
第6章hive内部表与外部表的区别Hive是一个基于Hadoop的数据仓库工具,用于对大规模数据集进行数据存储、查询和分析。Hive支持内部表(ManagedTable)和外部表(ExternalTable)两种表类型,它们在数据存储、管理方式和生命周期等方面存在显著区别。以下是内部表和外部表的主要区别:1.数据存储位置内部表:数据存储在Hive的默认存储目录下,通常位于HDFS(HadoopDi
- 使用 Doris 和 Iceberg
向阳1218
大数据doris
作为一种全新的开放式的数据管理架构,湖仓一体(DataLakehouse)融合了数据仓库的高性能、实时性以及数据湖的低成本、灵活性等优势,帮助用户更加便捷地满足各种数据处理分析的需求,在企业的大数据体系中已经得到越来越多的应用。在过去多个版本中,ApacheDoris持续加深与数据湖的融合,当前已演进出一套成熟的湖仓一体解决方案。自0.15版本起,ApacheDoris引入Hive和Iceberg
- 使用 Doris 和 LakeSoul
向阳1218
大数据doris
作为一种全新的开放式的数据管理架构,湖仓一体(DataLakehouse)融合了数据仓库的高性能、实时性以及数据湖的低成本、灵活性等优势,帮助用户更加便捷地满足各种数据处理分析的需求,在企业的大数据体系中已经得到越来越多的应用。在过去多个版本中,ApacheDoris持续加深与数据湖的融合,当前已演进出一套成熟的湖仓一体解决方案。自0.15版本起,ApacheDoris引入Hive和Iceberg
- 为什么要进行数据仓库分层?
BenBen尔
#建模方法spark大数据分布式
对数据仓库进行分层(如常见的ODS、DWD、DWS、ADS等层次)是为了解决复杂数据处理场景中的效率、可维护性、易用性问题。以下是分层的主要目的和优势:1、职责分离,逻辑解耦分层能够沉淀公共的数据模型,实现了逻辑解耦。有以下好处:减少重复开发,提升研发效率从数仓模型角度能够提升数据一致性。减少了冗余计算,高频查询或者高频开发无需使用原始数据,直接使用公共的数据模型查询或者开发即可,减少了对计算资源
- 数据仓库有哪些建模方法?
BenBen尔
#数据仓库数据仓库大数据
数据仓库的建模方法主要分为关系建模和多维建模两大类,不同方法适用于不同的业务场景和目标。以下是常见的建模方法及其特点:一、关系建模(规范化建模)基于关系型数据库的规范化理论,强调减少数据冗余,适合复杂的企业级数据仓库(EDW)。第三范式(3NF)定义:通过规范化将数据分解为多个关联表,确保每个字段仅依赖主键。优点:数据冗余低,一致性高,适合复杂事务处理。缺点:查询需要多表关联,性能较低;业务理解成
- 现代数据栈:秽土重生?——从 SAP x Databricks 看数据世界的轮回
数据库
由SAP官宣与Databricks合作想开去。现代数据栈(ModernDataStack)曾一度是数据行业最炙手可热的概念。Snowflake、Databricks、Fivetran、dbt……一众明星公司描绘出一个美好的未来:所有数据汇集到云端数据仓库,所有分析、BI和AI应用直接连接仓库数据,再无数据孤岛,数据流转自由,一切井然有序。但现实并没有这么美好。现代数据栈经历了一轮狂热,又在短短几年
- Hive高级SQL技巧及实际应用场景
小技工丨
大数据随笔sqlhive数据仓库大数据
Hive高级SQL技巧及实际应用场景引言ApacheHive是一个建立在Hadoop之上的数据仓库基础设施,它提供了一个用于查询和管理分布式存储中的大型数据集的机制。通过使用类似于SQL(称为HiveQL)的语言,Hive使得数据分析变得更加简单和高效。本文将详细探讨一些Hive高级SQL技巧,并结合实际的应用场景进行说明。HiveSQL的高级使用技巧1.窗口函数描述:窗口函数允许我们在不使用GR
- 如何设计高效的数据湖架构?
晴天彩虹雨
架构大数据数据仓库
1.引言在大数据时代,数据湖(DataLake)逐渐成为企业存储和处理海量数据的重要基础设施。相比于传统数据仓库,数据湖能够支持结构化、半结构化和非结构化数据,同时提供更灵活的存储与计算能力。然而,如何合理设计数据湖架构,优化存储策略、Schema演进以及数据生命周期管理,是数据架构师必须深入思考的问题。本篇文章将深入探讨数据湖架构的设计方法,结合Hudi、Iceberg、DeltaLake等技术
- 初识开源云原生数仓Databend
开源项目精选
云原生
Databend是一款开源的数据仓库产品,主要定位于OLAP场景,采用云原生架构理念(可对比snowflake),有非常好的扩展性、同时具备低成本、高性能的优势,兼容MySQL协议。Stars数8,245Forks数765主要特点针对对象存储平台进行优化的云原生架构。符合SQL:2011标准,支持复杂查询和数据版本回溯(时间旅行)功能。与流行的商业智能(BI)、提取、转换和加载(ETL)以及数据科
- 一文理清概念:数据中台(DMP)-数据仓库(DW)-数据湖(DL)-湖仓一体-数据治理(DG)
Debug_Snail
HadoopBigDataDataScience数据仓库大数据数据中台数据湖数据治理
数据仓库、数据中台、数据湖、湖仓一体是数据管理和分析领域的重要概念,它们在功能、架构和应用场景上各有特点,同时也在演进中相互关联和补充。以下是对它们的定义和关系的详细解析:1.核心概念(1)数据仓库(DataWarehouse,DW)定义:一种面向主题的、集成的、稳定的数据存储系统,用于支持企业决策分析(如BI、报表)。数据通常经过ETL(抽取、转换、加载)处理,以结构化形式存储,采用Schema
- doris:阿里云 MaxCompute
向阳1218
大数据doris
MaxCompute是阿里云上的企业级SaaS(SoftwareasaService)模式云数据仓库。什么是MaxCompute连接MaxCompute示例--1.创建Catalog。CREATECATALOGmcPROPERTIES("type"="max_compute","mc.default.project"="xxx","mc.access_key"="xxxx","mc.secret_
- 使用Activeloop Deep Lake构建深度学习数据仓库与向量存储
dgay_hua
深度学习人工智能python
技术背景介绍随着深度学习技术的发展,数据的存储与管理成为了一个重要的问题。尤其是对于需要处理大量数据的应用,例如自然语言处理和图像识别,传统的数据存储方式已经无法满足需求。ActiveloopDeepLake是专为深度学习设计的数据仓库,可以作为向量存储使用,支持多模态数据的存储和处理,并且可以直接用于细调大型语言模型(LLMs)。此外,它还提供自动版本控制,无需依赖其他服务,兼容主要云服务提供商
- 数据湖架构与实时数仓实践:Hudi、Iceberg、Kafka + Flink + Spark
晴天彩虹雨
架构kafkaflink数据仓库
1.引言:数据湖与数据仓库的融合趋势在大数据时代,传统的数据仓库(DataWarehouse,DW)因其强一致性和高效查询能力,一直是企业数据分析的核心。然而,随着数据量和数据类型的爆炸式增长,传统数据仓库的存储成本和数据管理难度逐渐增加。为了解决这些问题,数据湖(DataLake)概念应运而生。数据湖能够存储原始数据,支持半结构化和非结构化数据,提供更灵活的计算框架,但其缺乏事务管理和数据一致性
- 什么是数据库中的宽表?
見贤思齊
数据分析数据库
数据库中的宽表(WideTable)是指一种包含大量列的表结构设计,通常通过将多个业务相关的数据字段(甚至来自不同表的字段)合并到一张表中,以减少多表关联查询的需求。宽表常见于数据仓库、OLAP(联机分析处理)系统或大数据场景,其核心目标是优化查询性能,尤其是在需要频繁进行复杂分析或生成报表的场景中。一、宽表的核心特点1.列数多宽表可能包含数十甚至数百列,涵盖多个维度和指标(例如订单信息、客户信息
- 【数据仓库与数据挖掘基础】第一章 概论/基础知识
精神病不行计算机不上班
数据仓库与数据挖掘基础数据挖掘数据仓库
知识点复习:事务(关于事务的一些知识点可以点这里)一、数据仓库的一些基本的知识1.从数据库到数据仓库1.1数据库用于事务处理1.1.1定义:事务处理是指对数据库中数据的操作,这些操作通常包括插入、更新、删除和查询等。事务处理的核心是确保数据的一致性和完整性。事务的定义:事务是数据库操作的基本单位,包含一组逻辑上相关的操作。事务要么全部成功,要么全部失败。ACID特性:原子性(Atomicity):
- 云数据库是什么数据库?
云服务器数据库
云数据库,简单来说,是一种部署在云计算环境中的数据库服务。它借助云计算的强大资源,将数据库管理系统以服务的形式提供给用户,用户无需在本地自行搭建复杂的硬件和软件环境,通过互联网就能便捷地使用数据库功能。这就像是把原本需要在自家搭建、维护的“数据仓库”搬到了云端的“大型仓储中心”,由专业团队负责管理和维护。与传统数据库相比,云数据库有着诸多明显差异。传统数据库往往需要用户自行购置服务器、存储设备等硬
- Kimball维度模型之数据仓库灵魂总线架构
ByteCodeLabs
维度数据仓库设计数据仓库架构
目录一总线架构(BusArchitecture)1总线矩阵(BusMatrix)2Mapping文档二一致性维度(ConformedDimension)三一致性事实(ConformedFact)在数据仓库领域,深刻理解基本概念是确立强大数据管理体系的关键。数据仓库作为一个庞大而复杂的系统,其核心概念涉及多维体系结构、总线架构等关键要素。首要的是理解数据仓库的架构,例如Multidimensiona
- 湖仓一体化及冷、热、实时三级存储
麦当当MDD
数据仓库Spark大数据数据库数据仓库数据库架构
一、湖仓一体化(Lakehouse)湖仓一体化(Lakehouse)是数据湖(DataLake)与数据仓库(DataWarehouse)的结合,旨在解决传统数据架构中数据孤岛、存储冗余、计算性能不足等问题。其核心思想是兼顾数据湖的存储灵活性和数据仓库的管理与计算能力,使得结构化、半结构化、非结构化数据能够在同一存储系统中高效管理和分析。二、为什么需要湖仓一体?数据湖的缺陷:缺乏强Schema,查询
- 深入理解Kettle:ETL工具的学习与实践
未知方程 无解
本文还有配套的精品资源,点击获取简介:Kettle(Spoon)是Pentaho公司开发的开源ETL工具,用于数据整合和数据仓库建设。本学习笔记着重于Kettle的核心——转换引擎,详细探讨其数据处理的各个步骤,包括数据的输入、转换、输出以及工作原理,提供了一系列的学习资源和实践操作指南,旨在帮助学习者深入理解并掌握Kettle的转换引擎,从而提升数据处理能力。1.Kettle(Spoon)简介与
- 探索数据仓库自动化:ETL流程设计与实践
Echo_Wish
大数据高阶实战秘籍数据仓库自动化etl
探索数据仓库自动化:ETL流程设计与实践在大数据时代,数据仓库已成为企业数据管理和决策支持的核心工具。如何高效地提取、转换和加载数据(ETL),是数据仓库建设中的重要环节。本文将围绕数据仓库自动化的ETL流程设计展开,结合实际代码示例,探讨如何构建高效、稳定和可扩展的ETL解决方案。什么是ETL?ETL(Extract,Transform,Load)是指数据抽取、转换和加载,是数据仓库建设的重要步
- 基于hive的电信离线用户的行为分析系统
赵谨言
论文经验分享毕业设计
标题:基于hive的电信离线用户的行为分析系统内容:1.摘要随着电信行业的快速发展,用户行为数据呈现出海量、复杂的特点。为了深入了解用户行为模式,提升电信服务质量和精准营销能力,本研究旨在构建基于Hive的电信离线用户行为分析系统。通过收集电信用户的通话记录、上网行为、短信使用等多源数据,利用Hive数据仓库工具进行数据存储和处理,采用数据挖掘和机器学习算法对用户行为进行分析。实验结果表明,该系统
- 阿里云MaxCompute面试题汇总及参考答案
大模型大数据攻城狮
阿里云odps云计算机器学习大数据面试大数据面经增量数据
目录简述MaxCompute的核心功能及适用场景,与传统数据仓库的区别解释MaxCompute分层架构设计原则,与传统数仓分层有何异同MaxCompute的存储架构如何实现高可用与扩展性解析伏羲(Fuxi)分布式调度系统工作原理盘古(Pangu)分布式存储系统数据分片策略计算与存储分离架构的资源弹性扩展方案解释MaxCompute多租户资源隔离实现机制容错机制设计:Worker节点故障时的数据恢复
- 国产化替代 | 星环科技TDH替代IBM数仓,助力城商行构建湖仓一体平台
ibm
城商行构建湖仓一体平台|TDH替代IBM数仓IBM的数仓NetezzaEOL是2023年,数仓Netezza生命周期结束了。数仓产品停止提供支持和更新,不再为该产品提供修复漏洞或功能改进的服务。某城市商业银行在此背景下,启动数据仓库系统升级项目,将数据仓库从IBMNetezza迁移到星环科技大数据基础平台TDH,不但成功实现了数据仓库的国产化替代,还建设了新一代的湖仓一体平台,为银行业务发展提供新
- 《数据仓库》读书笔记:第11章 非结构化数据和数据仓库
search-lemon
数据仓库数据仓库
该系列博文为《数据仓库BuildingtheDataWarehouse》一书的读书笔记,笔者将书中重点内容进行概括总结。大致保留书中结构,一部分根据自己的理解进行调整。如发现问题,欢迎批评指正。章节博文1《数据仓库》读书笔记:第1章决策支持系统的发展2《数据仓库》读书笔记:第2章数据仓库环境3《数据仓库》读书笔记:第3章设计数据仓库4《数据仓库》读书笔记:第4章数据仓库中的粒度5《数据仓库》读书笔
- 稳定运行的以Redshift数据仓库为数据源和目标的ETL性能变差时提高性能方法和步骤
weixin_30777913
数据仓库云计算
当以AmazonRedshift数据仓库为数据源和目标的ETL(Extract,Transform,Load)性能变差时,可能涉及多个方面的优化措施。提升RedshiftETL性能的关键在于多个方面的综合优化。你需要定期监控查询执行情况、调整ETL作业的执行计划、优化数据模型、合理分配资源以及在必要时调整集群配置。通过不断调整和优化这些方面,可以显著提高ETL作业的性能,确保系统稳定、高效运行。以
- 【自学笔记】大数据基础知识点总览-持续更新
Long_poem
笔记大数据
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录大数据基础知识点总览1.大数据概述2.大数据处理技术3.数据仓库与数据挖掘4.大数据分析与可视化5.大数据平台与架构6.大数据安全与隐私总结大数据基础知识点总览1.大数据概述定义:大数据是指数据量巨大、类型多样、处理速度快的数据集合。特征:4V(Volume、Velocity、Variety、Veracity)描述了大数据的主
- Airflow和PySPARK实现带多组参数和标签的Amazon Redshift数据仓库批量数据导出程序
weixin_30777913
pythonspark云计算
设计一个基于多个带标签SQL模板作为配置文件和多组参数的PySPARK代码程序,实现根据不同的输入参数,用Airflow进行调度,自动批量地将AmazonRedshift数据仓库的数据导出为Parquet、CSV和Excel文件到S3上,标签和多个参数(以“_”分割)为组成导出数据文件名,文件已经存在则覆盖原始文件。PySpark程序需要异常处理,输出带时间戳和每个运行批次和每个导出文件作业运行状
- 【Apache Paimon】-- 13 -- 利用 paimon-flink-action 同步 mysql 表数据
oo寻梦in记
ApachePaimonapacheflinkmysqlapachepaimon
利用PaimonSchemaEvolution核心特性同步变更的mysql表结构和数据1、背景信息在Paimon诞生以前,若mysql/pg等数据源的表结构发生变化时,我们有几种处理方式(1)人工通知(比如常规的使用邮件),然后运维人员手动同步到数据仓库中(2)使用flink消费DDLbinlog,然后自动更新Hive的外部表和内部表schema那么现在,有了Paimon,我们可以利用其特性,自动
- 数据整合平台Airbyte中的Shopify连接器使用指南
bavDHAUO
python
技术背景介绍Airbyte是一种专门用于ELT数据集成的平台,支持从API、数据库和文件到数据仓库和数据湖的管道搭建。其拥有最大规模的ELT连接器目录,支持众多的数据仓库和数据库。本文将介绍如何使用Airbyte的Shopify连接器加载Shopify对象作为文档。核心原理解析Airbyte的Shopify连接器作为一个文档加载器,通过API将Shopify的订单、产品等对象加载为文档。用户可以通
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在