- svn 通过127.0.01能访问 但通过公网IP不能访问,这是什么原因?
行思理
运维Linuxsvnlinux防火墙
连接失败的提示如下1、SVN的启动方法方法一:svnserve-d-r/mnt/svn方法二:svnserve-d--listen-port3690-r/mnt/svn方法三:svnserve-d-r/mnt/svn--listen-host0.0.0.02、首先检查svn服务器是否启动方法一:netstat-tunlp|grepsvn演示如下如上状态,说明已启动方法二:svnserve--ver
- Spring AI 实战:手把手教你打造一个智能客服机器人!
Leaton Lee
spring人工智能机器人
前言:为什么要做一个智能客服机器人?在当今数字化时代,智能客服机器人已经成为企业提升用户体验和服务效率的重要工具。无论是解答用户问题、处理订单咨询,还是提供技术支持,智能客服机器人都能够高效地完成任务。SpringAI框架为我们提供了一个强大的工具集,结合自然语言处理(NLP)技术,我们可以轻松地构建一个功能强大的智能客服机器人。本文将从零开始,一步步教你如何利用SpringAI和相关技术打造一个
- Unity AI 技术浅析(二)
爱研究的小牛
AIGC—游戏制作AIGC—虚拟现实unity人工智能游戏引擎AIGC机器学习深度学习
UnityAI是Unity引擎中集成的智能技术,旨在为游戏开发者、虚拟现实(VR)和增强现实(AR)应用开发者提供强大的AI工具和功能。UnityAI涵盖了从智能代理(Agents)、机器学习(MachineLearning)到自然语言处理(NLP)等多个领域。一、UnityAI的工作原理1.智能代理(Agents)UnityAI的核心之一是智能代理(Agents),这些代理可以模拟游戏中的非玩家
- 人工智能基础知识
yzx991013
人工智能
首先分为两大类:一:机器视觉cv1.特征比较明显2.经典模型:cnn,resnet,deepface,yolov(1-12),vi-transformer。缺点:不能解决收听问题。3.落地,无人识别,轨道追踪,无人驾驶,(主要解决看的东西)。二:自然语言处理nlp(语音识别)处理(文本)方面解决(说和听的问题),RNN,LSTM,attention,transformer(基于规则的翻译,超越普通
- 基于NLP的客户意见分析:从数据到洞察
Echo_Wish
Python算法Python笔记自然语言处理人工智能
友友们好!我的新专栏《Python进阶》正式启动啦!这是一个专为那些渴望提升Python技能的朋友们量身打造的专栏,无论你是已经有一定基础的开发者,还是希望深入挖掘Python潜力的爱好者,这里都将是你不可错过的宝藏。在这个专栏中,你将会找到:●深入解析:每一篇文章都将深入剖析Python的高级概念和应用,包括但不限于数据分析、机器学习、Web开发等。●实战案例:通过丰富的实战案例,带你一步步实现
- RAG 检索增强生成:技术详解与应用展望
君君学姐
RAG检索增强生成
RAG检索增强生成:技术详解与应用展望一、引言随着人工智能技术的飞速发展,自然语言处理(NLP)领域迎来了前所未有的变革。其中,检索增强生成(Retrieval-AugmentedGeneration,简称RAG)作为一种新兴的技术框架,正逐渐成为大模型应用中的热门选择。RAG通过结合信息检索(IR)和自然语言生成(NLG)的能力,旨在提升模型在回答问题、生成文本等任务中的准确性和可靠性。本文将深
- 目前市场上的人工智能大模型有哪些?
国货崛起
大模型人工智能人工智能
截至最后更新时间(2024年3月中旬),以下是国内外部分知名的人工智能大模型,按类别和用途大致分类如下:国外:自然语言处理(NLP)大模型:OpenAIGPT系列:GPT-3:迄今为止最为知名的自然语言处理大模型之一,具备强大的文本生成、理解和对话能力。GPT-4:后续版本,性能和参数量比GPT-3更高,各项指标均有所提升。Google的Transformer系列:BERT(Bidirection
- 详解:Grok中文版 _Grok 3 国内中文版本在线使用
人工智能
GrokAI是由XAI公司推出的一款尖端人工智能系统。作为该公司核心技术之一,GrokAI专注于推动人工智能在各行各业的实际应用,尤其在数据分析、自然语言处理(NLP)、自动化决策、机器学习等领域表现出色。Grok的最大亮点在于其强大的数据处理能力。它能够高效地从大量复杂数据中提取有价值的信息,并做出精准预测。借助深度学习与强化学习等先进技术,GrokAI具备自我学习的能力,可以通过不断的训练来优
- 如何结合NLP(自然语言处理)技术提升OCR系统的语义理解和上下文感知能力?
金智维科技官方
自然语言处理ocr人工智能
光学字符识别(OCR)技术能够快速从文档、图像中提取文本信息,目前已经广泛应用于金融、教育、医疗、物流等领域。然而,传统OCR技术的功能主要集中在字符提取和简单的结构化输出上,难以处理复杂场景中涉及的语义理解与上下文感知问题。而通过将自然语言处理(NLP)技术与OCR相结合,可以极大提升系统对文本的语义理解能力,为多场景应用赋予更高的智能化水平。虽然OCR在文本识别的准确性和速度上不断提升,但面对
- 基于Python 和 DeepSeek API 实现文本分类
修破立生
大模型python人工智能
在自然语言处理(NLP)领域,文本分类是一项非常重要的任务,它可以帮助我们将大量的文本数据自动归类到不同的类别中。传统的文本分类方法有很多,而近年来,利用大模型进行文本分类逐渐成为一种流行且高效的方式。本文将介绍如何使用Python编写代码,结合DeepSeekAPI实现文本分类的功能,并探讨使用大模型方法进行文本分类与其他方法的区别。1代码概述我们的代码主要实现了以下几个功能:创建一个DeepS
- OLMo 7B:推动自然语言处理领域的技术革新
单皎娥
OLMo7B:推动自然语言处理领域的技术革新OLMo-7B项目地址:https://gitcode.com/hf_mirrors/ai-gitcode/OLMo-7B引言随着人工智能技术的飞速发展,自然语言处理(NLP)领域取得了显著的进步。然而,在实际应用中,NLP技术仍然面临着诸多挑战,如语境理解、信息抽取、情感分析等。为了解决这些问题,艾伦人工智能研究所(AI2)推出了OLMo系列模型,其中
- AI 外呼产品架构解读:让智能外呼更精准高效
MARS_AI_
人工智能架构自然语言处理信息与通信
在人工智能(AI)技术迅猛发展的今天,AI外呼系统已成为呼叫中心领域的新宠。本文将剖析AI外呼产品的基本架构,帮助读者理解其背后的技术逻辑和应用价值。一、支撑能力层:AI外呼的基石AI外呼系统的底层架构,即支撑能力层,为整个系统提供了坚实的技术基础。这一层主要包括以下三个核心组成部分:1.AI基础能力AI基础能力涵盖了语音识别(ASR)、自然语言处理(NLP)和语音合成(TTS)等技术。这些技术使
- 自然语言模型(NLP)介绍
Liudef06
StableDiffusion自然语言处理人工智能
一、自然语言模型概述自然语言模型(NLP)通过模拟人类语言理解和生成能力,已成为人工智能领域的核心技术。近年来,以DeepSeek、GPT-4、Claude等为代表的模型在技术突破和应用场景上展现出显著优势。例如,DeepSeek通过强化学习提升推理能力,其混合专家架构(MoE)显著优化了计算效率。二、核心技术解析1.DeepSeek模型架构混合专家模型(MoE):DeepSeek-V3采用Mo
- Transformer 代码剖析15 - Transformer模型代码 (pytorch实现)
lczdyx
Transformer代码剖析transformerpytorch深度学习embedding人工智能python
一、模型架构全景解析1.1类定义与继承关系classTransformer(nn.Module):该实现继承PyTorch的nn.Module基类,采用面向对象设计模式。核心架构包含编码器-解码器双塔结构,通过参数配置实现NLP任务的通用处理能力。TransformerEncoderDecoderMulti-HeadAttentionFeedForwardMaskedMulti-HeadAtten
- 沃丰科技AI浅谈|语音交互的三驾马车:ASR、NLP、TTS
沃丰科技
人工智能科技自然语言处理
在日常生活中,AI机器人离我们很近。你是否接到过这样的电话:“您好,检测到您已经购买某产品一周的时间了,请问您的使用感受如何?”“请问您对产品满意吗?有什么建议给到这边吗?”全程对话亲切无障碍,您可能觉得这是一个大型企业对于用户的恳切关注。如果我告诉您,这都是由外呼机器人拨打并且能够自行记录下您的意见和建议,以供企业改进,您会惊讶吗?基于深度神经学算法和卷积神经网络算法的AI外呼机器人,它是融合自
- 国内外优秀AI外呼产品推荐
MARS_AI_
人工智能自然语言处理sassnlp信息与通信
在数字化转型浪潮中,AI外呼系统凭借其高效率、低成本、精准交互的特点,成为企业客户触达与服务的核心工具。本文基于行业实践与技术测评,推荐国内外表现突出的AI外呼产品,重点解析国内标杆企业云蝠智能,并对比其他代表性产品,助企业快速选型。一、云蝠智能:大模型驱动的“性价比之王”作为国内AI外呼领域的领军者,云蝠智能以神鹤AI对话大模型为核心技术,深度融合自然语言处理(NLP)、语音识别(ASR)与语音
- spaCy 入门:自然语言处理的高效工具
zru_9602
人工智能自然语言处理人工智能
spaCy入门:自然语言处理的高效工具引言spaCy是一个功能强大的开源Python库,专注于工业级的自然语言处理(NLP)。它以其高效的性能、简洁的API和对多种语言的支持而闻名。无论是进行文本分析、信息提取还是构建智能聊天机器人,spaCy都是一个不可或缺的工具。本文将从零开始,介绍spaCy的基本功能和使用方法,并通过示例代码帮助你快速上手。1.安装spaCy在开始之前,首先需要安装spaC
- Transformer架构简略:DeepSeek 的底层基石
windwant
人工智能人工智能transformer架构
2017年,一篇名为《AttentionisAllYouNeed》的论文横空出世,提出了Transformer架构,彻底改变了自然语言处理(NLP)领域的格局。它不仅在各种NLP任务上取得了突破性进展,更成为了当今人工智能领域最具影响力的架构之一。一、从RNN到Transformer:突破瓶颈,开创先河在Transformer出现之前,循环神经网络(RNN)及其变体(如LSTM、GRU)是处理序列
- DeepSeek 各版本的区别
dushky
ai语言模型AI编程
DeepSeek各版本的区别主要体现在参数规模、架构设计、性能表现、硬件需求以及适用场景等方面,具体对比如下:一、参数规模与模型架构基础版(DeepSeek-V3)参数规模:6710亿参数(671B),采用混合专家(MoE)架构,每个Token激活约37B参数。定位:通用NLP任务,如智能客服、内容创作、知识问答等,强调高性价比和可扩展性。训练数据:14.8万亿Token预训练,推理速度较快(每秒
- DeepSeek人工智能领域的创新先锋与变革力量
CodeJourney.
数据库算法人工智能
在科技飞速发展的时代,人工智能(AI)无疑是最具变革性的力量之一。DeepSeek作为人工智能领域的关键参与者,正以其独特的技术路径和创新理念,深刻影响着行业的发展格局。深入解读相关信息,能让我们更全面地认识DeepSeek在人工智能领域的重要贡献、技术优势、发展战略以及其带来的广泛影响。一、DeepSeek的技术突破与创新(一)核心技术成就DeepSeek在自然语言处理(NLP)和计算机视觉等人
- 词向量(Word Embedding)
呵呵,不解释868
easyui前端javascript
词向量(WordEmbedding)是一种将自然语言中的单词映射到连续的向量空间的技术,使得语义相似的单词在向量空间中彼此接近。这种技术是现代自然语言处理(NLP)任务的基础之一,广泛应用于文本分类、机器翻译、问答系统等。###一、词向量的基本原理####1.离散表示vs连续表示传统的自然语言处理方法通常使用离散表示(如one-hot编码)来表示单词。然而,这种方法存在以下问题:-**维度灾难**
- 语义向量模型全解:从基础到现在的deepseek中的语义向量主流模型
来自于狂人
人工智能语言模型
一、语义向量模型:自然语言处理的基石语义向量模型(SemanticVectorModel)是自然语言处理(NLP)的核心技术,它将词汇、句子或文档映射为高维向量,在数学空间中量化语义信息。通过向量距离(如余弦相似度)衡量语义的相似性,支撑了搜索引擎、情感分析、机器翻译等实际应用。1.1发展简史1980s~2000s:基于统计的浅层模型,如TF-IDF(直接表征词的重要性)、LSA(通过矩阵分解降维
- 什么是预训练语言模型下游任务?
衣衣困
语言模型人工智能自然语言处理
问题:Word2Vec模型是预训练模型吗?由于训练的特性,word2Vec模型一定是与训练模型。给定一个词先使用独热编码然后使用预训练好的Q矩阵得到这个词的词向量。这里指的是词向量本身就是预训练的语言模型。什么是下游任务?在自然语言处理(NLP)和机器学习领域,下游任务(downstreamtasks)指的是使用已经训练好的模型或表示(如词向量、预训练的模型等)来解决的具体任务。这些任务通常依赖于
- 大语言模型原理与工程实践:大语言模型推理工程推理加速:算子优化
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍近年来,大语言模型(LargeLanguageModel,LLM)在自然语言处理(NLP)领域取得了显著的进展。其中,推理(Inference)过程是大语言模型的核心环节之一。然而,随着模型规模的不断扩大,推理过程中的计算复杂度和延时也逐渐成为制约模型应用的重要因素。因此,如何实现大语言模型推理工程的推理加速,成为研究者和工程师迫切需要解决的问题。2.核心概念与联系在本文中,我们将深入
- 微调(Fine-tuning)
路野yue
人工智能深度学习
微调(Fine-tuning)是自然语言处理(NLP)和深度学习中的一种常见技术,用于将预训练模型(Pre-trainedModel)适配到特定任务上。它的核心思想是:在预训练模型的基础上,通过少量任务相关的数据进一步训练模型,使其更好地适应目标任务。1.微调的核心思想预训练模型:像BERT、GPT这样的模型,已经在大量通用文本数据上进行了预训练,学习到了丰富的语言知识(如语法、语义、上下文关系等
- Deepseek 使用指南与提问优化策略
西瓜拍两瓣
ai语言模型pythongpt
序言随着人工智能技术的迅猛发展,语义搜索已成为提升信息检索效率和用户体验的核心工具。DeepSeek作为一款先进的语义搜索引擎,通过自然语言处理(NLP)和机器学习技术,能够深入理解用户查询的语义意图,提供高度精准的搜索结果。本文将详细介绍DeepSeek的核心功能、集成方法,并深入探讨如何通过优化提问策略,最大化利用DeepSeek的语义搜索能力,从而提升信息检索的效率和准确性。访问DeepSe
- 神经网络之CNN文本识别
邪恶的贝利亚
神经网络cnn人工智能
1.参考我的第一篇文章了解CNN概念神经网络之CNN图像识别(torchapi调用)-CSDN博客2.框架目前对NLP的研究分析应用最多的就是RNN系列的框架,比如RNN,GRU,LSTM等等,再加上Attention,基本可以认为是NLP的标配套餐了。但是在文本分类问题上,相比于RNN,CNN的构建和训练更为简单和快速,并且效果也不差,所以仍然会有一些研究。那么,CNN到底是怎么应用到NLP上的
- LLaMA(Meta开源的AI模型)与Ollama(本地运行和管理大模型的工具)简介(注意这俩虽然名字相似但没有直接联系)
Dontla
人工智能大模型LLMllama开源人工智能
文章目录LLaMA**Llama系列模型发展**1.**Llama1(2023年2月)**2.**Llama2(2023年7月)**3.**Llama3(2024年4月)****关键特性**-**开放性**:非商业许可下发布模型权重,促进研究社区发展[⁴](https://zh.wikipedia.org/zh-hans/LLaMA)。-**性能优势**:在NLP基准测试中表现优异,例如代码生成任
- 【深度学习】Hopfield网络:模拟联想记忆
T-I-M
深度学习人工智能
Transformer优化,什么是稀疏注意力?Transformer模型自2017年被提出以来,已经成为自然语言处理(NLP)领域的核心架构,并在计算机视觉、语音处理等其他领域也取得了显著的成功。然而,随着模型规模的不断增大和任务复杂性的提升,Transformer的计算成本和内存需求也随之激增。为了解决这一问题,研究者们提出了多种优化方法,其中稀疏注意力(SparseAttention)是一种备
- 完整指南:从基础到高级使用 Semantic Kernel
江沉晚呤时
NetcoreAIc#.netcore
SemanticKernel是微软推出的一款强大的开发框架,旨在帮助开发者通过语义理解和自然语言处理(NLP)构建智能应用。它为开发者提供了与OpenAI、AzureCognitiveServices等人工智能服务集成的简便接口,使得构建自然语言处理(NLP)应用变得更加直观和高效。在本文中,我们将从基础到高级全面讲解如何使用SemanticKernel,并提供详细的代码示例,帮助你快速掌握这个框
- 矩阵求逆(JAVA)初等行变换
qiuwanchi
矩阵求逆(JAVA)
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(初等行变换)
* @author 邱万迟
*
- JDK timer
antlove
javajdkschedulecodetimer
1.java.util.Timer.schedule(TimerTask task, long delay):多长时间(毫秒)后执行任务
2.java.util.Timer.schedule(TimerTask task, Date time):设定某个时间执行任务
3.java.util.Timer.schedule(TimerTask task, long delay,longperiod
- JVM调优总结 -Xms -Xmx -Xmn -Xss
coder_xpf
jvm应用服务器
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
典型设置:
java -Xmx
- JDBC连接数据库
Array_06
jdbc
package Util;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
public class JDBCUtil {
//完
- Unsupported major.minor version 51.0(jdk版本错误)
oloz
java
java.lang.UnsupportedClassVersionError: cn/support/cache/CacheType : Unsupported major.minor version 51.0 (unable to load class cn.support.cache.CacheType)
at org.apache.catalina.loader.WebappClassL
- 用多个线程处理1个List集合
362217990
多线程threadlist集合
昨天发了一个提问,启动5个线程将一个List中的内容,然后将5个线程的内容拼接起来,由于时间比较急迫,自己就写了一个Demo,希望对菜鸟有参考意义。。
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CountDownLatch;
public c
- JSP简单访问数据库
香水浓
sqlmysqljsp
学习使用javaBean,代码很烂,仅为留个脚印
public class DBHelper {
private String driverName;
private String url;
private String user;
private String password;
private Connection connection;
privat
- Flex4中使用组件添加柱状图、饼状图等图表
AdyZhang
Flex
1.添加一个最简单的柱状图
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
<?xml version=
"1.0"&n
- Android 5.0 - ProgressBar 进度条无法展示到按钮的前面
aijuans
android
在低于SDK < 21 的版本中,ProgressBar 可以展示到按钮前面,并且为之在按钮的中间,但是切换到android 5.0后进度条ProgressBar 展示顺序变化了,按钮再前面,ProgressBar 在后面了我的xml配置文件如下:
[html]
view plain
copy
<RelativeLa
- 查询汇总的sql
baalwolf
sql
select list.listname, list.createtime,listcount from dream_list as list , (select listid,count(listid) as listcount from dream_list_user group by listid order by count(
- Linux du命令和df命令区别
BigBird2012
linux
1,两者区别
du,disk usage,是通过搜索文件来计算每个文件的大小然后累加,du能看到的文件只是一些当前存在的,没有被删除的。他计算的大小就是当前他认为存在的所有文件大小的累加和。
- AngularJS中的$apply,用还是不用?
bijian1013
JavaScriptAngularJS$apply
在AngularJS开发中,何时应该调用$scope.$apply(),何时不应该调用。下面我们透彻地解释这个问题。
但是首先,让我们把$apply转换成一种简化的形式。
scope.$apply就像一个懒惰的工人。它需要按照命
- [Zookeeper学习笔记十]Zookeeper源代码分析之ClientCnxn数据序列化和反序列化
bit1129
zookeeper
ClientCnxn是Zookeeper客户端和Zookeeper服务器端进行通信和事件通知处理的主要类,它内部包含两个类,1. SendThread 2. EventThread, SendThread负责客户端和服务器端的数据通信,也包括事件信息的传输,EventThread主要在客户端回调注册的Watchers进行通知处理
ClientCnxn构造方法
&
- 【Java命令一】jmap
bit1129
Java命令
jmap命令的用法:
[hadoop@hadoop sbin]$ jmap
Usage:
jmap [option] <pid>
(to connect to running process)
jmap [option] <executable <core>
(to connect to a
- Apache 服务器安全防护及实战
ronin47
此文转自IBM.
Apache 服务简介
Web 服务器也称为 WWW 服务器或 HTTP 服务器 (HTTP Server),它是 Internet 上最常见也是使用最频繁的服务器之一,Web 服务器能够为用户提供网页浏览、论坛访问等等服务。
由于用户在通过 Web 浏览器访问信息资源的过程中,无须再关心一些技术性的细节,而且界面非常友好,因而 Web 在 Internet 上一推出就得到
- unity 3d实例化位置出现布置?
brotherlamp
unity教程unityunity资料unity视频unity自学
问:unity 3d实例化位置出现布置?
答:实例化的同时就可以指定被实例化的物体的位置,即 position
Instantiate (original : Object, position : Vector3, rotation : Quaternion) : Object
这样你不需要再用Transform.Position了,
如果你省略了第二个参数(
- 《重构,改善现有代码的设计》第八章 Duplicate Observed Data
bylijinnan
java重构
import java.awt.Color;
import java.awt.Container;
import java.awt.FlowLayout;
import java.awt.Label;
import java.awt.TextField;
import java.awt.event.FocusAdapter;
import java.awt.event.FocusE
- struts2更改struts.xml配置目录
chiangfai
struts.xml
struts2默认是读取classes目录下的配置文件,要更改配置文件目录,比如放在WEB-INF下,路径应该写成../struts.xml(非/WEB-INF/struts.xml)
web.xml文件修改如下:
<filter>
<filter-name>struts2</filter-name>
<filter-class&g
- redis做缓存时的一点优化
chenchao051
redishadooppipeline
最近集群上有个job,其中需要短时间内频繁访问缓存,大概7亿多次。我这边的缓存是使用redis来做的,问题就来了。
首先,redis中存的是普通kv,没有考虑使用hash等解结构,那么以为着这个job需要访问7亿多次redis,导致效率低,且出现很多redi
- mysql导出数据不输出标题行
daizj
mysql数据导出去掉第一行去掉标题
当想使用数据库中的某些数据,想将其导入到文件中,而想去掉第一行的标题是可以加上-N参数
如通过下面命令导出数据:
mysql -uuserName -ppasswd -hhost -Pport -Ddatabase -e " select * from tableName" > exportResult.txt
结果为:
studentid
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
先下载PHPEXCEL类文件,放在class目录下面,然后新建一个index.php文件,内容如下
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('
- 爱情格言
dcj3sjt126com
格言
1) I love you not because of who you are, but because of who I am when I am with you. 我爱你,不是因为你是一个怎样的人,而是因为我喜欢与你在一起时的感觉。 2) No man or woman is worth your tears, and the one who is, won‘t
- 转 Activity 详解——Activity文档翻译
e200702084
androidUIsqlite配置管理网络应用
activity 展现在用户面前的经常是全屏窗口,你也可以将 activity 作为浮动窗口来使用(使用设置了 windowIsFloating 的主题),或者嵌入到其他的 activity (使用 ActivityGroup )中。 当用户离开 activity 时你可以在 onPause() 进行相应的操作 。更重要的是,用户做的任何改变都应该在该点上提交 ( 经常提交到 ContentPro
- win7安装MongoDB服务
geeksun
mongodb
1. 下载MongoDB的windows版本:mongodb-win32-x86_64-2008plus-ssl-3.0.4.zip,Linux版本也在这里下载,下载地址: http://www.mongodb.org/downloads
2. 解压MongoDB在D:\server\mongodb, 在D:\server\mongodb下创建d
- Javascript魔法方法:__defineGetter__,__defineSetter__
hongtoushizi
js
转载自: http://www.blackglory.me/javascript-magic-method-definegetter-definesetter/
在javascript的类中,可以用defineGetter和defineSetter_控制成员变量的Get和Set行为
例如,在一个图书类中,我们自动为Book加上书名符号:
function Book(name){
- 错误的日期格式可能导致走nginx proxy cache时不能进行304响应
jinnianshilongnian
cache
昨天在整合某些系统的nginx配置时,出现了当使用nginx cache时无法返回304响应的情况,出问题的响应头: Content-Type:text/html; charset=gb2312 Date:Mon, 05 Jan 2015 01:58:05 GMT Expires:Mon , 05 Jan 15 02:03:00 GMT Last-Modified:Mon, 05
- 数据源架构模式之行数据入口
home198979
PHP架构行数据入口
注:看不懂的请勿踩,此文章非针对java,java爱好者可直接略过。
一、概念
行数据入口(Row Data Gateway):充当数据源中单条记录入口的对象,每行一个实例。
二、简单实现行数据入口
为了方便理解,还是先简单实现:
<?php
/**
* 行数据入口类
*/
class OrderGateway {
/*定义元数
- Linux各个目录的作用及内容
pda158
linux脚本
1)根目录“/” 根目录位于目录结构的最顶层,用斜线(/)表示,类似于
Windows
操作系统的“C:\“,包含Fedora操作系统中所有的目录和文件。 2)/bin /bin 目录又称为二进制目录,包含了那些供系统管理员和普通用户使用的重要
linux命令的二进制映像。该目录存放的内容包括各种可执行文件,还有某些可执行文件的符号连接。常用的命令有:cp、d
- ubuntu12.04上编译openjdk7
ol_beta
HotSpotjvmjdkOpenJDK
获取源码
从openjdk代码仓库获取(比较慢)
安装mercurial Mercurial是一个版本管理工具。 sudo apt-get install mercurial
将以下内容添加到$HOME/.hgrc文件中,如果没有则自己创建一个: [extensions] forest=/home/lichengwu/hgforest-crew/forest.py fe
- 将数据库字段转换成设计文档所需的字段
vipbooks
设计模式工作正则表达式
哈哈,出差这么久终于回来了,回家的感觉真好!
PowerDesigner的物理数据库一出来,设计文档中要改的字段就多得不计其数,如果要把PowerDesigner中的字段一个个Copy到设计文档中,那将会是一件非常痛苦的事情。