- 奇怪的比赛(Python,递归,状态压缩动态规划dp)
不染_是非
python算法python动态规划算法蓝桥杯
目录前言:题目:思路:递归:代码及详细注释:状态压缩dp:代码及详细注释:总结:前言:这道题原本是蓝桥上的题,现在搜不到了,网上关于此题的讲解更是寥寥无几,仅有的讲解也只是递归思想,python讲解和状态压缩dp的解决方法都没有,这里就带大家用状态压缩dp方法来解决此题。题目:大奖赛计分规则:每位选手需要回答10个问题(其编号为1到10),越后面越有难度。答对的,当前分数翻倍;答错了,则扣掉与题号
- LeetCode HOT-100 分类总结
悬浮海
#LeetCodeHOT100leetcode算法HOT-100分类总结
文章目录二分搜索排序滑动窗口哈希表位运算前缀和双指针图二叉树回溯贪心:动态规划:背包问题:单调栈(辅助栈):并查集LRU缓存小技巧二分搜索【NO.4】LeetCodeHOT100—4.寻找两个正序数组的中位数【NO.17】LeetCodeHOT100—33.搜索旋转排序数组【NO.18】LeetCodeHOT100—34.在排序数组中查找元素的第一个和最后一个位置排序排序方法,如果可以确定数值的范
- 动态规划与一维数组
debug_running_Hu
动态规划算法
动态规划与一维数组的结合主要用于解决那些状态可以由单个变量表示的问题。这通常意味着问题具有某种线性或单调递增的性质。一维数组dp[i]存储的是到达状态i的最优解。状态i的最优解通常依赖于它之前状态(0到i-1)的最优解。让我们通过几个例子来详细讲解:1.斐波那契数列:这是动态规划中最经典的例子之一。斐波那契数列的第n项定义为前两项之和:F(n)=F(n-1)+F(n-2),其中F(0)=0,F(1
- 动态规划与回溯算法融合【高效解决组合、排列与子集问题】
一键难忘
算法之翼算法动态规划代理模式
本文收录于专栏:算法之翼动态规划与回溯算法融合【高效解决组合、排列与子集问题】动态规划(DynamicProgramming)和回溯算法(Backtracking)是解决复杂问题的两种重要算法。它们在许多问题中表现出色,但当两者结合使用时,能够更高效地解决一些特定类型的问题,如子集、排列和组合问题。这篇文章将探讨动态规划与回溯算法的结合,并通过代码实例展示如何应用这种结合方法解决实际问题。动态规划
- C语言青蛙跳台阶问题
共享家9527
c语言
在算法学习中,青蛙跳台阶问题是一个经典的递归和动态规划入门案例。它通过简单的场景,揭示了复杂的算法思想,非常适合初学者理解递归与动态规划的核心概念。一、问题描述一只青蛙要跳上n级台阶,每次它可以跳1级或者2级台阶。那么,青蛙跳上n级台阶总共有多少种不同的跳法呢?二、解题思路递归思路:-对于第n级台阶,青蛙到达它的方式要么是从第n-1级台阶跳1级上来,要么是从第n-2级台阶跳2级上来。-所以,跳上n
- 2023年数学建模动态规划算法在最短路径问题中的应用:以Floyd算法为例
人工智能_SYBH
算法matlab数据结构动态规划
订阅专栏后9月比赛期间会分享思路及Matlab代码数学建模是将实际问题抽象化为数学问题,并采用数学工具和技巧进行求解的过程。在实际应用中,数学建模是解决问题的一种有效方法。本文将介绍Floyd算法在数学建模中的应用。Floyd算法是解决最短路径问题的一种经典动态规划算法。最短路径问题是指在一个加权有向图中,从一个源节点到其他各节点的最短路径问题。在实际应用中,最短路径问题广泛应用于交通运输、通信网
- 动态规划详解-最小路径和问题【python】
数据分析螺丝钉
LeetCode刷题与模拟面试动态规划算法leetcodepython数据结构
作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。会一些的技术:数据分析、算法、SQL、大数据相关、python欢迎加入社区:码上找工作作者专栏每日更新:LeetCode解锁1000题:打怪升级之旅python数据分析可视化:企业实战案例备注说明:方便大家阅读,统一使用python,带必要注释,公众号数据分析螺丝钉一起打怪升级1.问题介绍和应用场景最小路径和问题是一个常见的动态规划问
- 数据结构与算法再探(六)动态规划
刀客123
数据结构与算法动态规划算法
目录动态规划(DynamicProgramming,DP)动态规划的基本思想动态规划的核心概念动态规划的实现步骤动态规划实例1、爬楼梯c++递归(超时)需要使用记忆化递归循环2、打家劫舍3、最小路径和4、完全平方数5、最长公共子序列6、0-1背包问题总结动态规划(DynamicProgramming,DP)释义:动态规划是一种解决复杂问题的优化方法,通过将大问题拆解成小问题,逐步解决小问题,最终得
- 【算法】动态规划:从斐波那契数列到背包问题
杰九
优质文章算法动态规划
【算法】动态规划:从斐波那契数列到背包问题文章目录【算法】动态规划:从斐波那契数列到背包问题1.斐波那契数列2.爬楼梯3.零钱转换Python代码4.零钱兑换II5.组合数dp和排列数dp6.为什么动态规划的核心思想计算组合数的正确方法代码实现为什么先遍历硬币再遍历金额可以计算组合数详细解释举例说明最终结果具体组合情况为什么有效7.背包问题01背包问题定义完全背包问题定义示例为什么需要倒序遍历8.
- 【Day24 LeetCode】贪心Ⅱ
银河梦想家
leetcode算法
一、贪心Ⅱ1、买卖股票的最佳时机II122这题第一想法是使用动态规划做,每天有两个状态,持有股票和非持有股票,每次计算这两个状态下的最优值。classSolution{public:intmaxProfit(vector&prices){//表示当前没有/有股票的两个状态intdp0=0,dp1=-prices[0];for(inti=1;i&prices){intans=0;for(inti=1
- (C++)P1216数字三角形(动态规划)⭐⭐⭐⭐
*TQK*
算法练习c++动态规划
[USACO1.5][IOI1994]数字三角形NumberTriangles-洛谷题目描述观察下面的数字金字塔。写一个程序来查找从最高点到底部任意处结束的路径,使路径经过数字的和最大。每一步可以走到左下方的点也可以到达右下方的点。在上面的样例中,从7→3→8→7→5的路径产生了最大权值。输入格式第一个行一个正整数r,表示行的数目。后面每行为这个数字金字塔特定行包含的整数。输出格式单独的一行,包含
- 动态规划汇总5
get_zhang_
动态规划子串子序列动态规划算法开发语言leetcode
1.最长递增子序列力扣题目链接(opensnewwindow)给你一个整数数组nums,找到其中最长严格递增子序列的长度。子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7]是数组[0,3,1,6,2,2,7]的子序列。示例1:输入:nums=[10,9,2,5,3,7,101,18]输出:4解释:最长递增子序列是[2,3,7,101],因此长
- 数据结构与算法:动态规划dp:理论基础和相关力扣题(509.斐波那契数列、70.爬楼梯、62. 不同路径、63.不同路径Ⅱ、343.整数拆分)
shanshandeisu
数据结构与算法LeetCode动态规划leetcode算法dp力扣数据结构
1.0.理论基础动态规划主要解决的问题种类有:背包问题打家劫舍股票问题子序列问题解决步骤:dp数组及其下标的意义递推公式dp数组初始化遍历顺序打印dp数组2.0.相关力扣题509.斐波那契数列classSolution:deffib(self,n:int)->int:ifn==0:return0ifn==1:return1dp=[0]*35dp[1]=1foriinrange(2,31):dp[i
- 最多获得的短信条数_云短信平台优惠活动_200分_A卷_动态规划
bug小王爷
华为OD机试真题(JavaA卷+B卷)动态规划华为od华为java
最多获得的短信条数_云短信平台优惠活动题目描述:某云短信厂商,为庆祝国庆,推出充值优惠活动。现在给出客户预算,和优惠售价序列,求最多可获得的短信总条数。输入输出描述:输入描述: 第一行客户预算M,其中0≤M≤10^6 第二行给出售价表,P1,P2,…Pn,其中1≤n≤100, Pi为充值i元获得的短信条数。 1≤Pi≤1000,1≤n≤100输出描述: 最多获得的短信条数示例1:输入:6
- 动态规划(Dynamic Programming,简称 DP)
佛渡红尘
计算机应用与算法动态规划代理模式算法
动态规划(DynamicProgramming,简称DP)是一种在数学、计算机科学和经济学中使用的,通过把原问题分解为相对简单的子问题的方式来求解复杂问题的方法。动态规划常常适用于有重叠子问题和最优子结构性质的问题。通过保存和重用已经解决的子问题的解,来避免重复计算,从而大大提高了算法的效率。动态规划的基本思想是将一个复杂的问题分解为若干个相对简单的子问题,通过求解子问题,并将这些子问题的解保存起
- 题目:解码方法(来自leetcode)动态规划----斐波那契模型
清风逸梦
leetcode动态规划算法
解码方法题目动态规划(5步走)状态表示状态转移方程初始化填表顺序返回值代码题目链接题目动态规划(5步走)状态表示dp[i]表示为从下标i之前的的解码数。状态转移方程以i位置为终点,下标为i的位置有两种方式:第一种就是单独解码,第二种就是与前面的一位数合并解码。单独解码有分两种情况:第一种是:当s[i]在[1,9]时可以单独解码,就相当于在dp[i-1]种情况后接上一个单独解码,所以dp[i]=dp
- 蓝桥杯Python组最后几天冲刺———吐血总结,练题总结,很管用我学会了
晚风时亦鹿
学习笔记Python算法笔记python
一、重要知识要点1、穷举法2、枚举法3、动态规划4、回溯法5、图论6、深度优先搜索(DFS)7、广度优先搜索(BFS)8、二叉树9、递归10、分治法、矩阵法11、排列组合12、素数、质数、水仙花数13、欧几里得定理gcd14、求最大公约数、最小公倍数15、海伦公式(求三角形面积)16、博弈论17、贪心18、二分查找法19、hash表20、日期计算21、矩形快速幂22、树形DP23、最短路径24、最
- Python 最最最使用的动态规划入门教程 + 10道经典例题
我是阿核
Python动态规划算法pythonleetcode
不多废话,直接开讲动态规划三大步骤动态规划是一种将问题分解为若干个子问题,并存储这些子问题的解(通常使用数组或矩阵等数据结构),以便在后续计算中重复使用,从而避免了重复计算,提高了算法的效率。需要注意的是,动态规划并非一种特定的算法,而是一种解决问题的思想和方法。在实际应用中,需要根据具体问题的特点来设计合适的动态规划算法。动态规划的根本在于用已知项的求出未知项,并再次调用已经求出的未知项来解决更
- 动态规划,蒙特卡洛,TD,Qlearing,Sars,DQN,REINFORCE算法对比
青椒大仙KI11
动态规划算法机器学习深度学习
动态规划(DynamicProgramming,DP)通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划的步骤识别子问题:定义问题的递归解法,识别状态和选择。确定DP数组:确定存储子问题解的数据结构,通常是数组或矩阵。确定状态转移方程:找出状态之间的关系,即状态转移方程。边界条件:确定DP数组的初始值或边界条件。填表:按照顺序填入DP表,通常是从最小的子问题开始。构造最优解:根据
- C++爬楼梯——dfs、递归、动态规划、递推
*TQK*
编程语言知识点算法练习数据结构c++算法
什么是动态规划:给定一个问题,我们把他拆成一个个子问题,直到子问题可以直接解决。然后把子问题的答案保存起来,以减少重复计算。再根据子问题的答案反推,得出原问题解的一种方法递归的过程:"递"的过程是分解子问题的过程;(dfs是第归的一种)“归”的过程是产生答案的过程。“递”的过程是自顶向下。“归”的过程是自底向上,“底”代表的是已知最小子问题的答案递归适用于以下情况:1.问题具有递归结构:问题可以自
- [前端算法]动态规划
摇光93
算法算法动态规划
最优子结构,重叠子问题爬楼梯递归+记忆化搜索自顶向下varclimbStairs=function(n){letmap=[]functiondfs(n){if(n=coins[j]){dp[i]=Math.min(dp[i],dp[i-coins[j]]+1);}}}if(dp[amount]===Infinity){return-1;}returndp[amount];}01背包问题functi
- 贪心与动规(动态规划)
programming expert
动态规划算法
1.贪心与动规的区别贪心算法和动态规划的主要区别在于它们解决问题的方式、能否保证得到最优解以及算法复杂度。解决问题的方式:贪心算法:在每一步选择中都采取当前状态下最优的选择,从而希望导致结果是全局最优的。它通常不考虑未来后果,只关注当前的最优解。动态规划:将原问题分解为子问题,通过解决子问题,并将子问题的解存储下来(通常是存储在一个表格中),在解决原问题时利用这些子问题的解。它通常以自底向
- 程序设计思考:归零思想
hookby
程序设计
“归零思想”是一种在程序设计中常用的思考方法,主要指的是通过将某些值或状态归零,来简化问题或解决复杂度。这个思想在许多领域中都可以找到应用,尤其是在处理问题时需要清理和重置状态,避免累积错误或多余的计算。下面是几个典型的应用场景:1.状态重置在某些算法中,特别是动态规划、回溯、递归等问题中,我们可能需要在每个阶段重置某些变量或状态,防止它们影响后续的计算。例如,在递归算法中,递归结束后可以通过将某
- 为什么算法很难掌握
浅墨cgz
算法
算法之所以难以掌握,主要是因为以下几个原因:1.抽象性算法是对问题的抽象解决方案,通常不依赖于具体的编程语言或实现细节。初学者可能难以将抽象的逻辑转化为具体的代码。例如,动态规划(DP)的核心思想是将问题分解为子问题并存储中间结果,但这种抽象思维需要大量练习才能掌握。2.数学基础要求许多算法依赖于数学知识,例如:时间复杂度分析:需要理解大O表示法、递归关系等。图论算法:需要了解图的基本概念(如节点
- 代码随想录训练营第三十八天| 322. 零钱兑换 279.完全平方数 139.单词拆分 背包问题总结篇
chengooooooo
算法
322.零钱兑换题目链接:322.零钱兑换-力扣(LeetCode)讲解链接:代码随想录和昨天做过的零钱对换不太一样昨天的零钱兑换是完全背包里的球排列问题这个是求在指定的背包容量内求最小的组合数动态规划五部曲1定义dp方程我们假设用了dp[j]个硬币去凑j容量的背包要求dp[j]最小2推导递推公式首先最少用j-coins[i]个硬币来凑dp[j-coins[i]]容量的金额(背包)(不加上他本身的
- 动态规划的小总结(一)
抽奖开出西瓜
动态规划动态规划算法
前言这篇文章展示了规范化的动态规划做题步骤。部分内容借鉴了代码随想录代码随想录-动态规划509.斐波那契数题目描述和思路力扣题目链接(opensnewwindow)斐波那契数,通常用F(n)表示,形成的序列称为斐波那契数列。该数列由0和1开始,后面的每一项数字都是前面两项数字的和。也就是:F(0)=0,F(1)=1F(n)=F(n-1)+F(n-2),其中n>1给你n,请计算F(n)。典型的动态规
- Leetcode416. 分割等和子集
会流泪de鱼
Leetcode算法数据结构动态规划
Leetcode416.分割等和子集题目:给你一个只包含正整数的非空数组nums。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。示例1:输入:nums=[1,5,11,5]输出:true解释:数组可以分割成[1,5,5]和[11]。示例2:输入:nums=[1,2,3,5]输出:false解释:数组不能分割成两个元素和相等的子集。题解:动态规划:数组长度ntarget\tex
- 蓝桥杯备赛笔记(九)动态规划(一)
小魏´•ﻌ•`
蓝桥杯C++蓝桥杯笔记动态规划
1.动态规划基础(1)线性DP1)什么是DP(动态规划)DP(动态规划)全称DynamicProgramming,是运筹学的一个分支,是一种将复杂问题分解成很多重叠的子问题,并通过子问题的解得到整个问题的解的算法。在动态规划中有一些概念:状态:就是形如dp[i][j]=val的取值,其中i,j为下标,也是用于描述、确定状态所需的变量,val为状态值。状态转移:状态与状态之间的转移关系,一般可以表示
- leetcode 115. 不同的子序列
fks143
leetcodeleetcode
题目:115.不同的子序列-力扣(LeetCode)动态规划问题,f[i][j]表示s的第i个元素匹配到t的第j个元素,有多少种结果f[i][j]=f[i-1][j]+(s[i]==t[j]?f[i-1][j-1]:0)答案就是f[s.length()-1][t.length()-1]#define_MAX_(1000000007)classSolution{public:intnumDistin
- 【c++】【算法】【动态规划】最长公共子序列
钟离墨笺
算法算法c++动态规划
【c++】【算法】【动态规划】最长公共子序列//递归方式//最长公共子序//直接递归求最长公共子序长度intFindValue(conststring&X,conststring&Y,inti,intj){if(i==0||j==0)return0;if(X[i]==Y[j])returnFindValue(X,Y,i-1,j-1)+1;elsereturnstd::max(FindValue(X
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息