hadoop 源码分析(五)hadoop 任务调度TaskScheduler

阅读更多
hadoop mapreduce  之所有能够实现job的运行,以及将job分配到不同datanode 上的map和reduce task 是由TaskSchduler 完成的.

TaskScheduler mapreduce的任务调度器类,当jobClient 提交一个job 给JobTracker 的时候.JobTracker 接受taskTracker 的心跳.心跳信息含有空闲的slot信息等.JobTracker 则通过调用TaskScheduler 的assignTasks()方法类给报告心跳信息中含有空闲的slots信息的taskTracker 分布任务、

TaskScheduler 类为hadoop的 调度器的抽象类。默认继承它作为hadoop调度器的方式为FIFO,当然也有Capacity 和Fair等其他调度器,也可以自己编写符合特定场景所需要的调度器.通过继承TaskScheduler 类即可完成该功能、
下面就 FIFO 调度器进行简单的说明:

JobQueueTaskScheduler 类为FIFO 调度器的实现类.
1. 首先JobQueueTaskSchduler 注册两个监听器类:
JobQueueJobInProgressListener jobQueueJobInProgressListener;
EagerTaskInitializationListener eagerTaskInitializationListener;

JobQueueJobInProgressListener 维护一个job的queue ,其中JobSchedulingInfo 中包含job调度的信息:priority,startTime,id.以及 jobAdd update 等操作jobqueue的方法
EagerTaskInitializationListener 初始化job的listener ,这里所谓的初始化不是初始化job的属性信息,而是针对已经存在jobqueue中 即将被执行job的初始化,
class JobInitManager implements Runnable {
   
    public void run() {
      JobInProgress job = null;
      while (true) {
        try {
          synchronized (jobInitQueue) {
            while (jobInitQueue.isEmpty()) {
              jobInitQueue.wait();
            }
            job = jobInitQueue.remove(0);
          }
          threadPool.execute(new InitJob(job));
        } catch (InterruptedException t) {
          LOG.info("JobInitManagerThread interrupted.");
          break;
        } 
      }
      LOG.info("Shutting down thread pool");
      threadPool.shutdownNow();
    }
  }


resortInitQueue 按照priority 和starttime 来排序
jobRemoved()
jobUpdated()
jobStateChanged()当priority或是starttime被改变的时候则重新调用resortInitQueue()重新排序


public EagerTaskInitializationListener(Configuration conf) {
    numThreads = conf.getInt("mapred.jobinit.threads", DEFAULT_NUM_THREADS);
    threadPool = Executors.newFixedThreadPool(numThreads);
  }

在JobTracker 启动的时候 创建 mapred.jobinit.threads 改数量的线程去监控jobqueue.当jobqueue 中含有job的时候 则initjob

class InitJob implements Runnable {
  
    private JobInProgress job;
    
    public InitJob(JobInProgress job) {
      this.job = job;
    }
    
//调用run方法 回调TaskTrackerManager
    public void run() {
      ttm.initJob(job);
    }
  }


调度其中核心逻辑在assignTasks()方法中
下面分析分析 FIFO模式下的 assignTasks()

@Override
  public synchronized List assignTasks(TaskTracker taskTracker)
      throws IOException {
    TaskTrackerStatus taskTrackerStatus = taskTracker.getStatus(); 
ClusterStatus clusterStatus = taskTrackerManager.getClusterStatus();
//获取集群中TaskTracker 总数
final int numTaskTrackers = clusterStatus.getTaskTrackers();
//集群中map slot总数
final int clusterMapCapacity = clusterStatus.getMaxMapTasks();
 //集群中reduce slot 总数
    final int clusterReduceCapacity = clusterStatus.getMaxReduceTasks();

    Collection jobQueue =
      jobQueueJobInProgressListener.getJobQueue();

    //
    // Get map + reduce counts for the current tracker.
//
//当前的taskTracker 上map slot 总数
final int trackerMapCapacity = taskTrackerStatus.getMaxMapSlots();
//当前的taskTracker 上reduce slot 总数
final int trackerReduceCapacity = taskTrackerStatus.getMaxReduceSlots();
//当前的taskTracker上正在运行的 map数目
final int trackerRunningMaps = taskTrackerStatus.countMapTasks();
//当前的taskTracker上正在运行的 reduce数目
    final int trackerRunningReduces = taskTrackerStatus.countReduceTasks();

    // Assigned tasks
    List assignedTasks = new ArrayList();

    //
    // Compute (running + pending) map and reduce task numbers across pool
//
//该taskTracker上剩余的reduce数
int remainingReduceLoad = 0;
//该taskTracker 剩余的map数
    int remainingMapLoad = 0;
    synchronized (jobQueue) {
      for (JobInProgress job : jobQueue) {
        if (job.getStatus().getRunState() == JobStatus.RUNNING) {
          remainingMapLoad += (job.desiredMaps() - job.finishedMaps());
          if (job.scheduleReduces()) {
            remainingReduceLoad += 
              (job.desiredReduces() - job.finishedReduces());
          }
        }
      }
    }

// Compute the 'load factor' for maps and reduces
//map因子
    double mapLoadFactor = 0.0;
    if (clusterMapCapacity > 0) {
      mapLoadFactor = (double)remainingMapLoad / clusterMapCapacity;
    }
    double reduceLoadFactor = 0.0;
    if (clusterReduceCapacity > 0) {
      reduceLoadFactor = (double)remainingReduceLoad / clusterReduceCapacity;
    }
        
    //
    // In the below steps, we allocate first map tasks (if appropriate),
    // and then reduce tasks if appropriate.  We go through all jobs
    // in order of job arrival; jobs only get serviced if their 
    // predecessors are serviced, too.
    //

    //
    // We assign tasks to the current taskTracker if the given machine 
    // has a workload that's less than the maximum load of that kind of
    // task.
    // However, if the cluster is close to getting loaded i.e. we don't
    // have enough _padding_ for speculative executions etc., we only 
    // schedule the "highest priority" task i.e. the task from the job 
    // with the highest priority.
    //
    
    final int trackerCurrentMapCapacity = 
      Math.min((int)Math.ceil(mapLoadFactor * trackerMapCapacity), 
                              trackerMapCapacity);
    int availableMapSlots = trackerCurrentMapCapacity - trackerRunningMaps;
    boolean exceededMapPadding = false;
    if (availableMapSlots > 0) {
      exceededMapPadding = 
        exceededPadding(true, clusterStatus, trackerMapCapacity);
    }
    
    int numLocalMaps = 0;
    int numNonLocalMaps = 0;
    scheduleMaps:
    for (int i=0; i < availableMapSlots; ++i) {
      synchronized (jobQueue) {
        for (JobInProgress job : jobQueue) {
          if (job.getStatus().getRunState() != JobStatus.RUNNING) {
            continue;
          }

          Task t = null;
          
          // Try to schedule a node-local or rack-local Map task
          t = 
            job.obtainNewNodeOrRackLocalMapTask(taskTrackerStatus, 
                numTaskTrackers, taskTrackerManager.getNumberOfUniqueHosts());
          if (t != null) {
            assignedTasks.add(t);
            ++numLocalMaps;
            
            // Don't assign map tasks to the hilt!
            // Leave some free slots in the cluster for future task-failures,
            // speculative tasks etc. beyond the highest priority job
            if (exceededMapPadding) {
              break scheduleMaps;
            }
           
            // Try all jobs again for the next Map task 
            break;
          }
          
          // Try to schedule a node-local or rack-local Map task
          t = 
            job.obtainNewNonLocalMapTask(taskTrackerStatus, numTaskTrackers,
                                   taskTrackerManager.getNumberOfUniqueHosts());
          
          if (t != null) {
            assignedTasks.add(t);
            ++numNonLocalMaps;
            
            // We assign at most 1 off-switch or speculative task
            // This is to prevent TaskTrackers from stealing local-tasks
            // from other TaskTrackers.
            break scheduleMaps;
          }
        }
      }
    }
    int assignedMaps = assignedTasks.size();

    //
    // Same thing, but for reduce tasks
    // However we _never_ assign more than 1 reduce task per heartbeat
    //
    final int trackerCurrentReduceCapacity = 
      Math.min((int)Math.ceil(reduceLoadFactor * trackerReduceCapacity), 
               trackerReduceCapacity);
    final int availableReduceSlots = 
      Math.min((trackerCurrentReduceCapacity - trackerRunningReduces), 1);
    boolean exceededReducePadding = false;
    if (availableReduceSlots > 0) {
      exceededReducePadding = exceededPadding(false, clusterStatus, 
                                              trackerReduceCapacity);
      synchronized (jobQueue) {
        for (JobInProgress job : jobQueue) {
          if (job.getStatus().getRunState() != JobStatus.RUNNING ||
              job.numReduceTasks == 0) {
            continue;
          }

          Task t = 
            job.obtainNewReduceTask(taskTrackerStatus, numTaskTrackers, 
                                    taskTrackerManager.getNumberOfUniqueHosts()
                                    );
          if (t != null) {
            assignedTasks.add(t);
            break;
          }
          
          // Don't assign reduce tasks to the hilt!
          // Leave some free slots in the cluster for future task-failures,
          // speculative tasks etc. beyond the highest priority job
          if (exceededReducePadding) {
            break;
          }
        }
      }
    }
    
    if (LOG.isDebugEnabled()) {
      LOG.debug("Task assignments for " + taskTrackerStatus.getTrackerName() + " --> " +
                "[" + mapLoadFactor + ", " + trackerMapCapacity + ", " + 
                trackerCurrentMapCapacity + ", " + trackerRunningMaps + "] -> [" + 
                (trackerCurrentMapCapacity - trackerRunningMaps) + ", " +
                assignedMaps + " (" + numLocalMaps + ", " + numNonLocalMaps + 
                ")] [" + reduceLoadFactor + ", " + trackerReduceCapacity + ", " + 
                trackerCurrentReduceCapacity + "," + trackerRunningReduces + 
                "] -> [" + (trackerCurrentReduceCapacity - trackerRunningReduces) + 
                ", " + (assignedTasks.size()-assignedMaps) + "]");
    }

    return assignedTasks;
  }


上面方法中真正执行task的方法为:
obtainNewNodeOrRackLocalMapTask 和obtainNewNonLocalMapTask
下一张详细的分析这两个方法

hadoop 源码分析(五)hadoop 任务调度TaskScheduler_第1张图片
  • hadoop 源码分析(五)hadoop 任务调度TaskScheduler_第2张图片
  • 大小: 31.6 KB
  • 查看图片附件

你可能感兴趣的:(hadoop,mapreduce,taskScheduler)