- 论文阅读笔记——MAGICDRIVE: STREET VIEW GENERATION WITH DIVERSE 3D GEOMETRY CONTROL
寻丶幽风
论文阅读笔记论文阅读笔记3d人工智能自动驾驶
MagicDrive论文MagicDrive通过对3D数据和文本数据的多模态条件融合和隐式视角转换,实现了高质量、多视角一致的3D场景生成。几何条件编码Cross-attention:针对顺序数据,适合处理文本标记和边界框等可变长度输入。Additiveencoderbranch:对于地图等网络状规则数据,能够有效保留空间结构。对于文本按照模版构建:“Adrivingsceneat{locatio
- 技术大佬和普通程序员改bug的区别!
程序员干货站
大数据编程语言java人工智能数据分析
阅读本文大概需要2min文/强哥;未经授权禁止转载在我这么多年的工作生涯里,难免遇到那些工作糊弄的开发同事,随意编程的实习生,不够细致的测试,缺乏专业度的产品...产品的体验,取决于多个环节的把控,但很多情况下,由于bug严重影响体验,或者直接造成产品事故的,那么开发想甩锅都甩不掉!今天就给大家从几方面讲讲,经验丰富的程序员,是怎么debug的!1、并不是所有bug都需要修复修bug有个前提,那就
- 【笔记】扩散模型(五):Classifier-Free Guidance 理论推导与代码实现
LittleNyima
DiffusionModels笔记机器学习深度学习
论文链接:Classifier-FreeDiffusionGuidance上一篇文章我们学习了ClassifierGuidance,这种方法通过引入一个额外的分类器,使用梯度引导的方式成功地实现了条件生成。虽然ClassifierGuidance可以直接复用训练好的diffusionmodels,不过这种方法的问题是很明显的,首先需要额外训练一个分类器,而且这个分类器不仅仅分类一般的图像,还需要分
- 动态规划-01背包
ん贤
算法动态规划算法
兜兜转转了半天,发现还是Carl写的好。看过动态规划-基础的读者,大概都清楚。动态规划是将大问题,分解成子问题。并将子问题的解储存下来,避免重复计算。而背包问题,就是动态规划延申出来的一个大类。而01背包,就隶属于背包问题。那什么又是01背包呢?01背包有n件物品,与一次最多能背w重量的背包。第i件物品,重量为weight[i],得到的价值为value[i]。每件物品只能用一次,求解,将那些物品装
- 震惊! “深度学习”都在学习什么
扉间798
深度学习学习人工智能
常见的机器学习分类算法俗话说三个臭皮匠胜过诸葛亮这里面集成学习就是将单一的算法弱弱结合算法融合用投票给特征值加权重AdaBoost集成学习算法通过迭代训练一系列弱分类器,给予分类错误样本更高权重,使得后续弱分类器更关注这些样本,然后将这些弱分类器线性组合成强分类器,提高整体分类性能。(一)投票机制投票是一种直观且常用的算法融合策略。在多分类问题中,假设有多个分类器对同一数据进行分类判断。每个分类器
- 程序代码篇---Pyqt的密码界面
Ronin-Lotus
程序代码篇上位机知识篇pyqt数据库pythonubuntu
文章目录前言一、代码二、代码解释2.1用户数据库定义2.2窗口初始化2.3认证逻辑2.5角色处理2.6错误处理优化2.7功能扩展说明2.7.1用户类型区分管理员普通用户其他用户2.7.2安全增强建议三、运行效果四、运行命令五、界面改进建议5.1密码显示5.2用户头像显示5.3输入框动画效果5.4加载进度显示5.5键盘快捷键前言本文简单介绍了在Ubuntu系统上使用Python的Pyqt创建密码登录
- 快速理解Vue3中Pinia里的subscribe方法使用
MXN_小南学前端
vue3vue前端
快速理解Vue3中Pinia里的subscribe方法使用一、Pinia简介Pinia是Vue3的状态管理库,类似Vue2中的Vuex,但使用更简洁高效二、subscribe方法简介subscribe方法是Pinia中的监听器函数,有点像watch,但监听的是store中的状态(数据/state)变化,在store中的状态变化时会执行自定义逻辑。可用于调试和定位问题、记录日志后续分析、触发操作(比
- 【论文阅读】Availability Attacks Create Shortcuts
开心星人
论文阅读论文阅读
还得重复读这一篇论文,有些地方理解不够透彻可用性攻击通过在训练数据中添加难以察觉的扰动,使数据无法被机器学习算法利用,从而防止数据被未经授权地使用。例如,一家私人公司未经用户同意就收集了超过30亿张人脸图像,用于构建商业人脸识别模型。为解决这些担忧,许多数据投毒攻击被提出,以防止数据被未经授权的深度模型学习。它们通过在训练数据中添加难以察觉的扰动,使模型无法从数据中学习太多信息,从而导致模型在未见
- NLP高频面试题(十)——目前常见的几种大模型架构是啥样的
Chaos_Wang_
NLP常见面试题自然语言处理架构人工智能
深入浅出:目前常见的几种大模型架构解析随着Transformer模型的提出与发展,语言大模型迅速崛起,已经成为人工智能领域最为关注的热点之一。本文将为大家详细解析几种目前常见的大模型架构,帮助读者理解其核心差异及适用场景。1.什么是LLM(大语言模型)?LLM通常指参数量巨大、能够捕捉丰富语义信息的Transformer模型,它们通过海量的文本数据训练而成,能够实现高度逼真的文本生成、复杂的语言理
- Linux中mutex机制
C嘎嘎嵌入式开发
Linuxlinux运维服务器
在Linux中,mutex是一种用于多线程编程的同步机制,用于保护共享资源,防止多个线程同时访问或修改这些资源,从而避免竞态条件的发生。mutex是“mutualexclusion”的缩写,意为“互斥”。1.Mutex的基本概念互斥锁:mutex是一种锁机制,用于确保在任何时刻只有一个线程可以访问共享资源。当一个线程持有mutex时,其他试图获取该mutex的线程将被阻塞,直到持有mutex的线程
- 香港站群服务器租用应该怎么选?
莱卡云(Lcayun)
服务器运维linux前端网络
在租用香港站群服务器时,应该综合考虑多个因素以确保选择到性价比最高、性能最优的服务器。以下是一些关键的选择要点:香港站群服务器就找莱卡云IP资源数量和质量:数量:站群服务器一般需要多个独立IP,以便将每个站点分布在不同的IP上,避免搜索引擎对同IP站点的关联性判断1。分散性:尽量选择不同C段甚至不同B段的IP,这样可以增加站群的SEO效果,降低被搜索引擎认为是关联站点的风险1。质
- 基于Windows11的Xinference安装方法简介
hsg77
人工智能人工智能
基于Windows11的Xinference安装方法简介快速启动命令:condaactivateD:\cwgis_AI\xinferencexinference-local--host192.168.1.82--port9997condaactivateD:\cwgis_AI\xinferencexinference-local--host192.168.1.82--port9997http://
- 在SPSS中进行单因素方差分析(One-Way ANOVA)是一种常见的统计分析方法,用于比较三个或更多独立组之间的均值差异。
zhangfeng1133
均值算法算法
在SPSS中进行单因素方差分析(One-WayANOVA)是一种常见的统计分析方法,用于比较三个或更多独立组之间的均值差异。以下是进行单因素方差分析的详细步骤:---###1.**数据准备**-**因变量**:需要分析的连续变量(如成绩、收入等)。-**自变量**:分类变量(如组别、性别等),通常是一个名义变量。数据结构示例:|组别(自变量)|成绩(因变量)||----------------|-
- 深度学习 | pytorch + torchvision + python 版本对应及环境安装
zfgfdgbhs
深度学习pythonpytorch
目录一、版本对应二、安装命令(pip)1.版本(1)v2.5.1~v2.0.0(2)v1.13.1~v1.11.0(3)v1.10.1~v1.7.02.安装全过程(1)选择版本(2)安装结果参考文章一、版本对应下表来自pytorch的github官方文档:pytorch/vision:Datasets,TransformsandModelsspecifictoComputerVisionpytor
- 在SPSS的单因素方差分析(One-Way ANOVA)中,F值和t值是两种不同的统计量 f/t
zhangfeng1133
数据分析
在SPSS的单因素方差分析(One-WayANOVA)中,F值和t值是两种不同的统计量,用于不同的分析场景,具体含义如下:###1.**F值**F值是单因素方差分析中的统计量,用于检验多个组之间的均值是否存在显著差异。它是通过比较组间方差与组内方差的比值来计算的,具体公式为:**F值=组间方差/组内方差**-**F值的意义**:-F值越大,说明组间差异相对于组内差异越大,即不同组之间的均值差异越显
- 金鼎量化助手中的板块与成份股如何实时联动以及股票代码与股软联动
wxqq_541182238
金鼎量化助手经验分享笔记其他人工智能
在专栏之前的文章中有介绍板块强度的作用,使用了哪些参考指标等,下面介绍金鼎量化助手板块强度页面中的板块与成份个股的联动以及如何实现个股与股软:如同花顺、通达信之间的联动。通过股票代码直接联动到股软快速查看。一、板块强度与成份股的关联在金鼎量化助手的板块强度页面中分了两列,第一列是板块,第二列是板块对应的成份股,每天打开软件后会实时获取到板块的最新强度排名情况(需保证勾选上实时刷新选项框),板块列表
- Google的BeyondCorp 零信任网络
yinhezhanshen
网络
Google的BeyondCorp是一种零信任安全框架1。简单来说,就是抛弃了传统的以网络边界为基础的安全防护模式,不再认为只要在企业内部网络里就都是安全的,而是把访问控制的重点放在每个用户和设备上。产生背景过去企业常用防火墙等构建安全边界,认为边界内是安全的,边界外有威胁。但随着网络发展,边界变得模糊,攻击技术演进,边界防护效果变差,内部也会出现安全问题。在这种情况下,Google提出了Beyo
- 北单109 德国 vs 意大利
weixin_66725336
后端
北单109德国vs意大利两强对攻激战可期进球大战一触即发阵容动态德国:上轮欧国联客场采用「4-2-3-1」阵型,朱利安·布兰特顶替受伤的凯·哈弗茨出任单箭头,穆西亚拉、萨内与阿米里组成前场攻击群。尽管开场先失一球,但球队通过凯文·丹斯特(替补登场后迅速破门)和格雷茨卡的制胜球完成逆转。本轮莱昂·格雷茨卡和卡里姆·阿德耶米有望轮换首发,门将奥利弗·鲍曼继续镇守球门。意大利:上轮主场以「3-5-2」阵
- 最新智能优化算法: 贪婪个体优化算法(Greedy Man Optimization Algorithm,GMOA)求解23个经典函数测试集,MATLAB代码
IT猿手
MATLAB智能优化算法算法matlab开发语言人工智能智能优化算法
一、贪婪个体优化算法贪婪个体优化算法(GreedyManOptimizationAlgorithm,GMOA)是HamedNozari与HosseinAbdi于2024年提出的一种新型受生物启发的元启发式算法,它模拟了抵抗变化的竞争个体的行为。GMOA引入了两个独特的机制:MMO抵抗机制,防止过早替换解;周期性寄生虫清除机制,促进多样性并避免停滞。该算法旨在解决传统优化算法中的过早收敛和缺乏多样性
- Python读取.nc文件的方法与技术详解
傻啦嘿哟
关于python那些事儿人工智能前端服务器
目录一、引言二、使用netCDF4库读取.nc文件安装netCDF4库导入netCDF4库打开.nc文件获取变量读取变量数据案例与代码三、使用xarray库读取.nc文件安装xarray库导入xarray库打开.nc文件访问变量数据案例与代码四、性能与优化分块读取使用Dask进行并行计算减少不必要的变量加载五、其他注意事项文件路径变量命名数据类型文件关闭六、总结一、引言.nc文件,即NetCDF(
- 《面向模式的软件体系结构3-资源管理模式》读书笔记(7)--- Coordinator模式
weixin_33699914
人工智能
3.3Coordinator模式Coordinator(协调者)模式描述了如何通过协调涉及多个参与者(每个参与者都包含资源、资源使用者和资源提供者)的任务的完成来维护系统的一致性。这个模式提出了一个解决方案,使得在涉及多个参与者的任务中,或者所有参与者的任务都完成,或者一项任务都没有完成。这确保了系统总是处于一致的状态。1.问题很多系统都会执行涉及不止一个参与者的任务。一个参与者是一个主动实体,既
- 基于AWS Endpoint Security(EPS)的自动化安全基线部署
weixin_30777913
云计算awspython安全架构
设计AWS云架构方案实现基于AWSEndpointSecurity(EPS)的自动化安全基线部署,AMSAdvanced(AWS托管服务)环境会为所有新部署的资源自动安装EPS监控客户端,无需人工干预即可建立统一的安全基线。这种自动化机制特别适用于动态扩缩的云环境,确保新启动的EC2实例、容器等终端设备从初始状态即受保护,以及具体实现的详细步骤和关键代码。以下是基于AWSEndpointSecur
- 架构师必知必会系列:数据架构与数据管理
AI天才研究院
AI大模型企业级应用开发实战大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术1.背景介绍数据架构与数据管理介绍数据架构是指用来定义企业数据的逻辑结构、物理存储结构和数据的流转过程。它由数据中心和IT平台、数据库、文件系统、网络、安全、计算资源等构成。其目的是为了满足业务需求、提升组织效率和降低成本。数据架构包括数据字典、元数据、数据模型、数据流、数据仓库、数据管道、数据服务等。在应用中,将数据按照其自身特性进行划分、分类、归档、清洗和加工,才能
- 中国大陆网站用了lightHouse之后还有必要用WebPageTest么?
混血哲谈
网络
对于中国大陆的网站,即使已使用Lighthouse进行性能优化,WebPageTest仍有不可替代的价值。两者并非互斥,而是互补工具,适用于不同维度的性能分析。以下是具体原因和场景说明:一、核心结论:Lighthouse与WebPageTest的定位差异工具核心价值适用场景中国大陆场景的局限性Lighthouse提供代码级优化建议(如压缩资源、渲染阻塞修复)本地开发调试、快速生成优化清单仅反映本地
- 2025最新智能优化算法:改进型雪雁算法(Improved Snow Geese Algorithm, ISGA)求解23个经典函数测试集
荣华富贵8
程序员的知识储备1程序员的知识储备2程序员的知识储备3经验分享
摘要随着智能优化算法的不断发展,解决高维、复杂的优化问题已成为研究的重要课题。雪雁算法(SnowGeeseAlgorithm,SGA)作为一种新兴的自然启发式优化算法,以其高效的全局搜索能力受到了广泛关注。然而,雪雁算法在处理多峰、多约束和高维复杂问题时,仍面临收敛速度较慢和易陷入局部最优解的问题。为此,本文提出了一种改进型雪雁算法(ISGA),通过引入自适应权重调整机制和混合局部搜索策略,增强了
- 机器学习 Day01人工智能概述
山北雨夜漫步
机器学习人工智能
1.什么样的程序适合在gpu上运行计算密集型的程序:此类程序主要运算集中在寄存器,寄存器读写速度快,而GPU拥有强大的计算能力,能高效处理大量的寄存器运算,因此适合在GPU上运行。像科学计算中的数值模拟、密码破解等场景的程序,都属于计算密集型,在GPU上运行可大幅提升运算速度。易于并行的程序:GPU采用SIMD架构,有众多核心,同一时间每个核心适合做相同的事。易于并行的程序能充分利用GPU这一特性
- epoll成员函数介绍
C嘎嘎嵌入式开发
Linux服务器c++开发语言
epoll_create1epoll_create1是Linux系统中用于创建一个新的epoll实例的系统调用。epoll是一种高效的I/O事件通知机制,常用于处理大量的文件描述符(如套接字)。epoll_create1是epoll_create的改进版本,提供了更多的灵活性。函数原型intepoll_create1(intflags);参数说明flags类型:int描述:用于指定创建epoll实
- 代码随想录算法训练营Day10 | Leetcode 150逆波兰表达式求值、239滑动窗口最大值、 347前 K 个高频元素
Dominic_Holmes
leetcodepython算法数据结构
代码随想录算法训练营Day10|Leetcode150逆波兰表达式求值、239滑动窗口最大值、347前K个高频元素一、反转字符串相关题目:Leetcode150文档讲解:Leetcode150视频讲解:Leetcode1501.Leetcode150.逆波兰表达式求值给你一个字符串数组tokens,表示一个根据逆波兰表示法表示的算术表达式。请你计算该表达式。返回一个表示表达式值的整数。注意:有效的
- matlab近似计算联合密度分布
小蜗笔记
matlab学习笔记学习收藏matlab开发语言
在Matlab中,当A和B是两个序列数据时,可以通过以下步骤来近似求出A大于B的概率分布:数据准备:确保序列A和B具有相同的长度。如果长度不同,需要进行相应的处理(例如截取或插值)。计算A大于B的逻辑数组:使用关系运算符>来创建一个逻辑数组,其中每个元素表示A中对应位置的元素是否大于B中对应位置的元素。统计不同情况下的概率:可以将数据划分成若干个区间(例如使用histcounts函数),然后计算每
- Python画词云图,Python画圆形词云图,API详解
请一直在路上
python开发语言
在Python中,词云图的常用库是wordcloud。以下是核心API参数的详细讲解,以及一个完整的使用示例。一、参数类型默认值说明参数类型默认值说明widthint400词云图的宽度(像素)heightint200词云图的高度(像素)background_colorstr“black”背景颜色,可以是颜色名称(如“white”)或十六进制值(如“#FFFFFF”)colormapstr/matp
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D