Android系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析

        在前面一篇文章Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路中,介绍了在Android系统中Binder进程间通信机制中的Server角色是如何获得Service Manager远程接口的,即defaultServiceManager函数的实现。Server获得了Service Manager远程接口之后,就要把自己的Service添加到Service Manager中去,然后把自己启动起来,等待Client的请求。本文将通过分析源代码了解Server的启动过程是怎么样的。

        本文通过一个具体的例子来说明Binder机制中Server的启动过程。我们知道,在Android系统中,提供了多媒体播放的功能,这个功能是以服务的形式来提供的。这里,我们就通过分析MediaPlayerService的实现来了解Media Server的启动过程。

        首先,看一下MediaPlayerService的类图,以便我们理解下面要描述的内容。

Android系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析_第1张图片

        我们将要介绍的主角MediaPlayerService继承于BnMediaPlayerService类,熟悉Binder机制的同学应该知道BnMediaPlayerService是一个Binder Native类,用来处理Client请求的。BnMediaPlayerService继承于BnInterface类,BnInterface是一个模板类,它定义在frameworks/base/include/binder/IInterface.h文件中:

template 
class BnInterface : public INTERFACE, public BBinder 
{ 
public: 
 virtual sp  queryLocalInterface(const String16& _descriptor); 
 virtual const String16&  getInterfaceDescriptor() const; 
 
protected: 
 virtual IBinder*   onAsBinder(); 
}; 

       这里可以看出,BnMediaPlayerService实际是继承了IMediaPlayerService和BBinder类。IMediaPlayerService和BBinder类又分别继承了IInterface和IBinder类,IInterface和IBinder类又同时继承了RefBase类。

       实际上,BnMediaPlayerService并不是直接接收到Client处发送过来的请求,而是使用了IPCThreadState接收Client处发送过来的请求,而IPCThreadState又借助了ProcessState类来与Binder驱动程序交互。有关IPCThreadState和ProcessState的关系,可以参考上一篇文章Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路,接下来也会有相应的描述。IPCThreadState接收到了Client处的请求后,就会调用BBinder类的transact函数,并传入相关参数,BBinder类的transact函数最终调用BnMediaPlayerService类的onTransact函数,于是,就开始真正地处理Client的请求了。

      了解了MediaPlayerService类结构之后,就要开始进入到本文的主题了。

      首先,看看MediaPlayerService是如何启动的。启动MediaPlayerService的代码位于frameworks/base/media/mediaserver/main_mediaserver.cpp文件中:

int main(int argc, char** argv) 
{ 
 sp proc(ProcessState::self()); 
 sp sm = defaultServiceManager(); 
 LOGI("ServiceManager: %p", sm.get()); 
 AudioFlinger::instantiate(); 
 MediaPlayerService::instantiate(); 
 CameraService::instantiate(); 
 AudioPolicyService::instantiate(); 
 ProcessState::self()->startThreadPool(); 
 IPCThreadState::self()->joinThreadPool(); 
} 

       这里我们不关注AudioFlinger和CameraService相关的代码。
       先看下面这句代码:

                       sp proc(ProcessState::self());  

       这句代码的作用是通过ProcessState::self()调用创建一个ProcessState实例。ProcessState::self()是ProcessState类的一个静态成员变量,定义在frameworks/base/libs/binder/ProcessState.cpp文件中:

sp ProcessState::self() 
{ 
 if (gProcess != NULL) return gProcess; 
  
 AutoMutex _l(gProcessMutex); 
 if (gProcess == NULL) gProcess = new ProcessState; 
 return gProcess; 
} 

       这里可以看出,这个函数作用是返回一个全局唯一的ProcessState实例gProcess。全局唯一实例变量gProcess定义在frameworks/base/libs/binder/Static.cpp文件中:

                        Mutex gProcessMutex; 
                        sp gProcess;  

       再来看ProcessState的构造函数:

ProcessState::ProcessState() 
 : mDriverFD(open_driver()) 
 , mVMStart(MAP_FAILED) 
 , mManagesContexts(false) 
 , mBinderContextCheckFunc(NULL) 
 , mBinderContextUserData(NULL) 
 , mThreadPoolStarted(false) 
 , mThreadPoolSeq(1) 
{ 
 if (mDriverFD >= 0) { 
  // XXX Ideally, there should be a specific define for whether we 
  // have mmap (or whether we could possibly have the kernel module 
  // availabla). 
#if !defined(HAVE_WIN32_IPC) 
  // mmap the binder, providing a chunk of virtual address space to receive transactions. 
  mVMStart = mmap(0, BINDER_VM_SIZE, PROT_READ, MAP_PRIVATE | MAP_NORESERVE, mDriverFD, 0); 
  if (mVMStart == MAP_FAILED) { 
   // *sigh* 
   LOGE("Using /dev/binder failed: unable to mmap transaction memory.\n"); 
   close(mDriverFD); 
   mDriverFD = -1; 
  } 
#else 
  mDriverFD = -1; 
#endif 
 } 
 if (mDriverFD < 0) { 
  // Need to run without the driver, starting our own thread pool. 
 } 
} 

        这个函数有两个关键地方,一是通过open_driver函数打开Binder设备文件/dev/binder,并将打开设备文件描述符保存在成员变量mDriverFD中;二是通过mmap来把设备文件/dev/binder映射到内存中。

        先看open_driver函数的实现,这个函数同样位于frameworks/base/libs/binder/ProcessState.cpp文件中:

static int open_driver() 
{ 
 if (gSingleProcess) { 
  return -1; 
 } 
 
 int fd = open("/dev/binder", O_RDWR); 
 if (fd >= 0) { 
  fcntl(fd, F_SETFD, FD_CLOEXEC); 
  int vers; 
#if defined(HAVE_ANDROID_OS) 
  status_t result = ioctl(fd, BINDER_VERSION, &vers); 
#else 
  status_t result = -1; 
  errno = EPERM; 
#endif 
  if (result == -1) { 
   LOGE("Binder ioctl to obtain version failed: %s", strerror(errno)); 
   close(fd); 
   fd = -1; 
  } 
  if (result != 0 || vers != BINDER_CURRENT_PROTOCOL_VERSION) { 
   LOGE("Binder driver protocol does not match user space protocol!"); 
   close(fd); 
   fd = -1; 
  } 
#if defined(HAVE_ANDROID_OS) 
  size_t maxThreads = 15; 
  result = ioctl(fd, BINDER_SET_MAX_THREADS, &maxThreads); 
  if (result == -1) { 
   LOGE("Binder ioctl to set max threads failed: %s", strerror(errno)); 
  } 
#endif 
   
 } else { 
  LOGW("Opening '/dev/binder' failed: %s\n", strerror(errno)); 
 } 
 return fd; 
} 

        这个函数的作用主要是通过open文件操作函数来打开/dev/binder设备文件,然后再调用ioctl文件控制函数来分别执行BINDER_VERSION和BINDER_SET_MAX_THREADS两个命令来和Binder驱动程序进行交互,前者用于获得当前Binder驱动程序的版本号,后者用于通知Binder驱动程序,MediaPlayerService最多可同时启动15个线程来处理Client端的请求。

        open在Binder驱动程序中的具体实现,请参考前面一篇文章浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路,这里不再重复描述。打开/dev/binder设备文件后,Binder驱动程序就为MediaPlayerService进程创建了一个struct binder_proc结构体实例来维护MediaPlayerService进程上下文相关信息。

        我们来看一下ioctl文件操作函数执行BINDER_VERSION命令的过程:

                        status_t result = ioctl(fd, BINDER_VERSION, &vers);  

        这个函数调用最终进入到Binder驱动程序的binder_ioctl函数中,我们只关注BINDER_VERSION相关的部分逻辑:

static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 
{ 
 int ret; 
 struct binder_proc *proc = filp->private_data; 
 struct binder_thread *thread; 
 unsigned int size = _IOC_SIZE(cmd); 
 void __user *ubuf = (void __user *)arg; 
 
 /*printk(KERN_INFO "binder_ioctl: %d:%d %x %lx\n", proc->pid, current->pid, cmd, arg);*/ 
 
 ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2); 
 if (ret) 
  return ret; 
 
 mutex_lock(&binder_lock); 
 thread = binder_get_thread(proc); 
 if (thread == NULL) { 
  ret = -ENOMEM; 
  goto err; 
 } 
 
 switch (cmd) { 
 ...... 
 case BINDER_VERSION: 
  if (size != sizeof(struct binder_version)) { 
   ret = -EINVAL; 
   goto err; 
  } 
  if (put_user(BINDER_CURRENT_PROTOCOL_VERSION, &((struct binder_version *)ubuf)->protocol_version)) { 
   ret = -EINVAL; 
   goto err; 
  } 
  break; 
 ...... 
 } 
 ret = 0; 
err: 
  ...... 
 return ret; 
} 

        很简单,只是将BINDER_CURRENT_PROTOCOL_VERSION写入到传入的参数arg指向的用户缓冲区中去就返回了。BINDER_CURRENT_PROTOCOL_VERSION是一个宏,定义在kernel/common/drivers/staging/android/binder.h文件中:

                     /* This is the current protocol version. */ 
             #define BINDER_CURRENT_PROTOCOL_VERSION 7  

       这里为什么要把ubuf转换成struct binder_version之后,再通过其protocol_version成员变量再来写入呢,转了一圈,最终内容还是写入到ubuf中。我们看一下struct binder_version的定义就会明白,同样是在kernel/common/drivers/staging/android/binder.h文件中:

/* Use with BINDER_VERSION, driver fills in fields. */ 
struct binder_version { 
 /* driver protocol version -- increment with incompatible change */ 
 signed long protocol_version; 
}; 

         从注释中可以看出来,这里是考虑到兼容性,因为以后很有可能不是用signed long来表示版本号。

        这里有一个重要的地方要注意的是,由于这里是打开设备文件/dev/binder之后,第一次进入到binder_ioctl函数,因此,这里调用binder_get_thread的时候,就会为当前线程创建一个struct binder_thread结构体变量来维护线程上下文信息,具体可以参考浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路一文。

        接着我们再来看一下ioctl文件操作函数执行BINDER_SET_MAX_THREADS命令的过程:

                   result = ioctl(fd, BINDER_SET_MAX_THREADS, &maxThreads);  

        这个函数调用最终进入到Binder驱动程序的binder_ioctl函数中,我们只关注BINDER_SET_MAX_THREADS相关的部分逻辑:

static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 
{ 
 int ret; 
 struct binder_proc *proc = filp->private_data; 
 struct binder_thread *thread; 
 unsigned int size = _IOC_SIZE(cmd); 
 void __user *ubuf = (void __user *)arg; 
 
 /*printk(KERN_INFO "binder_ioctl: %d:%d %x %lx\n", proc->pid, current->pid, cmd, arg);*/ 
 
 ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2); 
 if (ret) 
  return ret; 
 
 mutex_lock(&binder_lock); 
 thread = binder_get_thread(proc); 
 if (thread == NULL) { 
  ret = -ENOMEM; 
  goto err; 
 } 
 
 switch (cmd) { 
 ...... 
 case BINDER_SET_MAX_THREADS: 
  if (copy_from_user(&proc->max_threads, ubuf, sizeof(proc->max_threads))) { 
   ret = -EINVAL; 
   goto err; 
  } 
  break; 
 ...... 
 } 
 ret = 0; 
err: 
 ...... 
 return ret; 
} 

        这里实现也是非常简单,只是简单地把用户传进来的参数保存在proc->max_threads中就完毕了。注意,这里再调用binder_get_thread函数的时候,就可以在proc->threads中找到当前线程对应的struct binder_thread结构了,因为前面已经创建好并保存在proc->threads红黑树中。

        回到ProcessState的构造函数中,这里还通过mmap函数来把设备文件/dev/binder映射到内存中,这个函数在浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路一文也已经有详细介绍,这里不再重复描述。宏BINDER_VM_SIZE就定义在ProcessState.cpp文件中:

             #define BINDER_VM_SIZE ((1*1024*1024) - (4096 *2))  

        mmap函数调用完成之后,Binder驱动程序就为当前进程预留了BINDER_VM_SIZE大小的内存空间了。

        这样,ProcessState全局唯一变量gProcess就创建完毕了,回到frameworks/base/media/mediaserver/main_mediaserver.cpp文件中的main函数,下一步是调用defaultServiceManager函数来获得Service Manager的远程接口,这个已经在上一篇文章浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路有详细描述,读者可以回过头去参考一下。

        再接下来,就进入到MediaPlayerService::instantiate函数把MediaPlayerService添加到Service Manger中去了。这个函数定义在frameworks/base/media/libmediaplayerservice/MediaPlayerService.cpp文件中:

void MediaPlayerService::instantiate() { 
 defaultServiceManager()->addService( 
   String16("media.player"), new MediaPlayerService()); 
} 

        我们重点看一下IServiceManger::addService的过程,这有助于我们加深对Binder机制的理解。

        在上一篇文章浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路中说到,defaultServiceManager返回的实际是一个BpServiceManger类实例,因此,我们看一下BpServiceManger::addService的实现,这个函数实现在frameworks/base/libs/binder/IServiceManager.cpp文件中:

class BpServiceManager : public BpInterface 
{ 
public: 
 BpServiceManager(const sp& impl) 
  : BpInterface(impl) 
 { 
 } 
 
 ...... 
 
 virtual status_t addService(const String16& name, const sp& service) 
 { 
  Parcel data, reply; 
  data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor()); 
  data.writeString16(name); 
  data.writeStrongBinder(service); 
  status_t err = remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply); 
  return err == NO_ERROR ? reply.readExceptionCode() 
 } 
 
 ...... 
 
}; 

         这里的Parcel类是用来于序列化进程间通信数据用的。
         先来看这一句的调用:

           data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());  

         IServiceManager::getInterfaceDescriptor()返回来的是一个字符串,即"android.os.IServiceManager",具体可以参考IServiceManger的实现。我们看一下Parcel::writeInterfaceToken的实现,位于frameworks/base/libs/binder/Parcel.cpp文件中:

// Write RPC headers. (previously just the interface token) 
status_t Parcel::writeInterfaceToken(const String16& interface) 
{ 
 writeInt32(IPCThreadState::self()->getStrictModePolicy() | 
    STRICT_MODE_PENALTY_GATHER); 
 // currently the interface identification token is just its name as a string 
 return writeString16(interface); 
} 

         它的作用是写入一个整数和一个字符串到Parcel中去。

         再来看下面的调用:

                    data.writeString16(name);  

        这里又是写入一个字符串到Parcel中去,这里的name即是上面传进来的“media.player”字符串。
        往下看:

               data.writeStrongBinder(service);  

        这里定入一个Binder对象到Parcel去。我们重点看一下这个函数的实现,因为它涉及到进程间传输Binder实体的问题,比较复杂,需要重点关注,同时,也是理解Binder机制的一个重点所在。注意,这里的service参数是一个MediaPlayerService对象。

status_t Parcel::writeStrongBinder(const sp& val) 
{ 
 return flatten_binder(ProcessState::self(), val, this); 
} 

        看到flatten_binder函数,是不是似曾相识的感觉?我们在前面一篇文章浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路中,曾经提到在Binder驱动程序中,使用struct flat_binder_object来表示传输中的一个binder对象,它的定义如下所示:

/* 
 * This is the flattened representation of a Binder object for transfer 
 * between processes. The 'offsets' supplied as part of a binder transaction 
 * contains offsets into the data where these structures occur. The Binder 
 * driver takes care of re-writing the structure type and data as it moves 
 * between processes. 
 */ 
struct flat_binder_object { 
 /* 8 bytes for large_flat_header. */ 
 unsigned long  type; 
 unsigned long  flags; 
 
 /* 8 bytes of data. */ 
 union { 
  void  *binder; /* local object */ 
  signed long handle;  /* remote object */ 
 }; 
 
 /* extra data associated with local object */ 
 void   *cookie; 
}; 

        各个成员变量的含义请参考资料Android Binder设计与实现。
        我们进入到flatten_binder函数看看:

status_t flatten_binder(const sp& proc, 
 const sp& binder, Parcel* out) 
{ 
 flat_binder_object obj; 
  
 obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS; 
 if (binder != NULL) { 
  IBinder *local = binder->localBinder(); 
  if (!local) { 
   BpBinder *proxy = binder->remoteBinder(); 
   if (proxy == NULL) { 
    LOGE("null proxy"); 
   } 
   const int32_t handle = proxy ? proxy->handle() : 0; 
   obj.type = BINDER_TYPE_HANDLE; 
   obj.handle = handle; 
   obj.cookie = NULL; 
  } else { 
   obj.type = BINDER_TYPE_BINDER; 
   obj.binder = local->getWeakRefs(); 
   obj.cookie = local; 
  } 
 } else { 
  obj.type = BINDER_TYPE_BINDER; 
  obj.binder = NULL; 
  obj.cookie = NULL; 
 } 
  
 return finish_flatten_binder(binder, obj, out); 
} 

        首先是初始化flat_binder_object的flags域: 

               obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;  

        0x7f表示处理本Binder实体请求数据包的线程的最低优先级,FLAT_BINDER_FLAG_ACCEPTS_FDS表示这个Binder实体可以接受文件描述符,Binder实体在收到文件描述符时,就会在本进程中打开这个文件。

       传进来的binder即为MediaPlayerService::instantiate函数中new出来的MediaPlayerService实例,因此,不为空。又由于MediaPlayerService继承自BBinder类,它是一个本地Binder实体,因此binder->localBinder返回一个BBinder指针,而且肯定不为空,于是执行下面语句:

obj.type = BINDER_TYPE_BINDER; 
obj.binder = local->getWeakRefs(); 
obj.cookie = local; 

        设置了flat_binder_obj的其他成员变量,注意,指向这个Binder实体地址的指针local保存在flat_binder_obj的成员变量cookie中。

        函数调用finish_flatten_binder来将这个flat_binder_obj写入到Parcel中去:

inline static status_t finish_flatten_binder( 
 const sp& binder, const flat_binder_object& flat, Parcel* out) 
{ 
 return out->writeObject(flat, false); 
} 

       Parcel::writeObject的实现如下:

status_t Parcel::writeObject(const flat_binder_object& val, bool nullMetaData) 
{ 
 const bool enoughData = (mDataPos+sizeof(val)) <= mDataCapacity; 
 const bool enoughObjects = mObjectsSize < mObjectsCapacity; 
 if (enoughData && enoughObjects) { 
restart_write: 
  *reinterpret_cast(mData+mDataPos) = val; 
   
  // Need to write meta-data? 
  if (nullMetaData || val.binder != NULL) { 
   mObjects[mObjectsSize] = mDataPos; 
   acquire_object(ProcessState::self(), val, this); 
   mObjectsSize++; 
  } 
   
  // remember if it's a file descriptor 
  if (val.type == BINDER_TYPE_FD) { 
   mHasFds = mFdsKnown = true; 
  } 
 
  return finishWrite(sizeof(flat_binder_object)); 
 } 
 
 if (!enoughData) { 
  const status_t err = growData(sizeof(val)); 
  if (err != NO_ERROR) return err; 
 } 
 if (!enoughObjects) { 
  size_t newSize = ((mObjectsSize+2)*3)/2; 
  size_t* objects = (size_t*)realloc(mObjects, newSize*sizeof(size_t)); 
  if (objects == NULL) return NO_MEMORY; 
  mObjects = objects; 
  mObjectsCapacity = newSize; 
 } 
  
 goto restart_write; 
} 

        这里除了把flat_binder_obj写到Parcel里面之内,还要记录这个flat_binder_obj在Parcel里面的偏移位置:

                    mObjects[mObjectsSize] = mDataPos;  

       这里因为,如果进程间传输的数据间带有Binder对象的时候,Binder驱动程序需要作进一步的处理,以维护各个Binder实体的一致性,下面我们将会看到Binder驱动程序是怎么处理这些Binder对象的。

       再回到BpServiceManager::addService函数中,调用下面语句:

      status_t err = remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply);  

       回到浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路一文中的类图中去看一下,这里的remote成员函数来自于BpRefBase类,它返回一个BpBinder指针。因此,我们继续进入到BpBinder::transact函数中去看看:

status_t BpBinder::transact( 
 uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) 
{ 
 // Once a binder has died, it will never come back to life. 
 if (mAlive) { 
  status_t status = IPCThreadState::self()->transact( 
   mHandle, code, data, reply, flags); 
  if (status == DEAD_OBJECT) mAlive = 0; 
  return status; 
 } 
 
 return DEAD_OBJECT; 
} 

       这里又调用了IPCThreadState::transact进执行实际的操作。注意,这里的mHandle为0,code为ADD_SERVICE_TRANSACTION。ADD_SERVICE_TRANSACTION是上面以参数形式传进来的,那mHandle为什么是0呢?因为这里表示的是Service Manager远程接口,它的句柄值一定是0,具体请参考浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路一文。

       再进入到IPCThreadState::transact函数,看看做了些什么事情:

status_t IPCThreadState::transact(int32_t handle, 
         uint32_t code, const Parcel& data, 
         Parcel* reply, uint32_t flags) 
{ 
 status_t err = data.errorCheck(); 
 
 flags |= TF_ACCEPT_FDS; 
 
 IF_LOG_TRANSACTIONS() { 
  TextOutput::Bundle _b(alog); 
  alog << "BC_TRANSACTION thr " << (void*)pthread_self() << " / hand " 
   << handle << " / code " << TypeCode(code) << ": " 
   << indent << data << dedent << endl; 
 } 
  
 if (err == NO_ERROR) { 
  LOG_ONEWAY(">>>> SEND from pid %d uid %d %s", getpid(), getuid(), 
   (flags & TF_ONE_WAY) == 0 ? "READ REPLY" : "ONE WAY"); 
  err = writeTransactionData(BC_TRANSACTION, flags, handle, code, data, NULL); 
 } 
  
 if (err != NO_ERROR) { 
  if (reply) reply->setError(err); 
  return (mLastError = err); 
 } 
  
 if ((flags & TF_ONE_WAY) == 0) { 
  #if 0 
  if (code == 4) { // relayout 
   LOGI(">>>>>> CALLING transaction 4"); 
  } else { 
   LOGI(">>>>>> CALLING transaction %d", code); 
  } 
  #endif 
  if (reply) { 
   err = waitForResponse(reply); 
  } else { 
   Parcel fakeReply; 
   err = waitForResponse(&fakeReply); 
  } 
  #if 0 
  if (code == 4) { // relayout 
   LOGI("<<<<<< RETURNING transaction 4"); 
  } else { 
   LOGI("<<<<<< RETURNING transaction %d", code); 
  } 
  #endif 
   
  IF_LOG_TRANSACTIONS() { 
   TextOutput::Bundle _b(alog); 
   alog << "BR_REPLY thr " << (void*)pthread_self() << " / hand " 
    << handle << ": "; 
   if (reply) alog << indent << *reply << dedent << endl; 
   else alog << "(none requested)" << endl; 
  } 
 } else { 
  err = waitForResponse(NULL, NULL); 
 } 
  
 return err; 
} 

        IPCThreadState::transact函数的参数flags是一个默认值为0的参数,上面没有传相应的实参进来,因此,这里就为0。

        函数首先调用writeTransactionData函数准备好一个struct binder_transaction_data结构体变量,这个是等一下要传输给Binder驱动程序的。struct binder_transaction_data的定义我们在浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路一文中有详细描述,读者不妨回过去读一下。这里为了方便描述,将struct binder_transaction_data的定义再次列出来:

struct binder_transaction_data { 
 /* The first two are only used for bcTRANSACTION and brTRANSACTION, 
  * identifying the target and contents of the transaction. 
  */ 
 union { 
  size_t handle; /* target descriptor of command transaction */ 
  void *ptr; /* target descriptor of return transaction */ 
 } target; 
 void  *cookie; /* target object cookie */ 
 unsigned int code;  /* transaction command */ 
 
 /* General information about the transaction. */ 
 unsigned int flags; 
 pid_t  sender_pid; 
 uid_t  sender_euid; 
 size_t  data_size; /* number of bytes of data */ 
 size_t  offsets_size; /* number of bytes of offsets */ 
 
 /* If this transaction is inline, the data immediately 
  * follows here; otherwise, it ends with a pointer to 
  * the data buffer. 
  */ 
 union { 
  struct { 
   /* transaction data */ 
   const void *buffer; 
   /* offsets from buffer to flat_binder_object structs */ 
   const void *offsets; 
  } ptr; 
  uint8_t buf[8]; 
 } data; 
}; 
  

         writeTransactionData函数的实现如下:

status_t IPCThreadState::writeTransactionData(int32_t cmd, uint32_t binderFlags, 
 int32_t handle, uint32_t code, const Parcel& data, status_t* statusBuffer) 
{ 
 binder_transaction_data tr; 
 
 tr.target.handle = handle; 
 tr.code = code; 
 tr.flags = binderFlags; 
  
 const status_t err = data.errorCheck(); 
 if (err == NO_ERROR) { 
  tr.data_size = data.ipcDataSize(); 
  tr.data.ptr.buffer = data.ipcData(); 
  tr.offsets_size = data.ipcObjectsCount()*sizeof(size_t); 
  tr.data.ptr.offsets = data.ipcObjects(); 
 } else if (statusBuffer) { 
  tr.flags |= TF_STATUS_CODE; 
  *statusBuffer = err; 
  tr.data_size = sizeof(status_t); 
  tr.data.ptr.buffer = statusBuffer; 
  tr.offsets_size = 0; 
  tr.data.ptr.offsets = NULL; 
 } else { 
  return (mLastError = err); 
 } 
  
 mOut.writeInt32(cmd); 
 mOut.write(&tr, sizeof(tr)); 
  
 return NO_ERROR; 
} 


  注意,这里的cmd为BC_TRANSACTION。 这个函数很简单,在这个场景下,就是执行下面语句来初始化本地变量tr:

tr.data_size = data.ipcDataSize(); 
tr.data.ptr.buffer = data.ipcData(); 
tr.offsets_size = data.ipcObjectsCount()*sizeof(size_t); 
tr.data.ptr.offsets = data.ipcObjects(); 

       回忆一下上面的内容,写入到tr.data.ptr.buffer的内容相当于下面的内容:

writeInt32(IPCThreadState::self()->getStrictModePolicy() | 
    STRICT_MODE_PENALTY_GATHER); 
writeString16("android.os.IServiceManager"); 
writeString16("media.player"); 
writeStrongBinder(new MediaPlayerService()); 

      其中包含了一个Binder实体MediaPlayerService,因此需要设置tr.offsets_size就为1,tr.data.ptr.offsets就指向了这个MediaPlayerService的地址在tr.data.ptr.buffer中的偏移量。最后,将tr的内容保存在IPCThreadState的成员变量mOut中。

       回到IPCThreadState::transact函数中,接下去看,(flags & TF_ONE_WAY) == 0为true,并且reply不为空,所以最终进入到waitForResponse(reply)这条路径来。我们看一下waitForResponse函数的实现:

status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult) 
{ 
 int32_t cmd; 
 int32_t err; 
 
 while (1) { 
  if ((err=talkWithDriver()) < NO_ERROR) break; 
  err = mIn.errorCheck(); 
  if (err < NO_ERROR) break; 
  if (mIn.dataAvail() == 0) continue; 
   
  cmd = mIn.readInt32(); 
   
  IF_LOG_COMMANDS() { 
   alog << "Processing waitForResponse Command: " 
    << getReturnString(cmd) << endl; 
  } 
 
  switch (cmd) { 
  case BR_TRANSACTION_COMPLETE: 
   if (!reply && !acquireResult) goto finish; 
   break; 
   
  case BR_DEAD_REPLY: 
   err = DEAD_OBJECT; 
   goto finish; 
 
  case BR_FAILED_REPLY: 
   err = FAILED_TRANSACTION; 
   goto finish; 
   
  case BR_ACQUIRE_RESULT: 
   { 
    LOG_ASSERT(acquireResult != NULL, "Unexpected brACQUIRE_RESULT"); 
    const int32_t result = mIn.readInt32(); 
    if (!acquireResult) continue; 
    *acquireResult = result ? NO_ERROR : INVALID_OPERATION; 
   } 
   goto finish; 
   
  case BR_REPLY: 
   { 
    binder_transaction_data tr; 
    err = mIn.read(&tr, sizeof(tr)); 
    LOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY"); 
    if (err != NO_ERROR) goto finish; 
 
    if (reply) { 
     if ((tr.flags & TF_STATUS_CODE) == 0) { 
      reply->ipcSetDataReference( 
       reinterpret_cast(tr.data.ptr.buffer), 
       tr.data_size, 
       reinterpret_cast(tr.data.ptr.offsets), 
       tr.offsets_size/sizeof(size_t), 
       freeBuffer, this); 
     } else { 
      err = *static_cast(tr.data.ptr.buffer); 
      freeBuffer(NULL, 
       reinterpret_cast(tr.data.ptr.buffer), 
       tr.data_size, 
       reinterpret_cast(tr.data.ptr.offsets), 
       tr.offsets_size/sizeof(size_t), this); 
     } 
    } else { 
     freeBuffer(NULL, 
      reinterpret_cast(tr.data.ptr.buffer), 
      tr.data_size, 
      reinterpret_cast(tr.data.ptr.offsets), 
      tr.offsets_size/sizeof(size_t), this); 
     continue; 
    } 
   } 
   goto finish; 
 
  default: 
   err = executeCommand(cmd); 
   if (err != NO_ERROR) goto finish; 
   break; 
  } 
 } 
 
finish: 
 if (err != NO_ERROR) { 
  if (acquireResult) *acquireResult = err; 
  if (reply) reply->setError(err); 
  mLastError = err; 
 } 
  
 return err; 
} 

        这个函数虽然很长,但是主要调用了talkWithDriver函数来与Binder驱动程序进行交互:

status_t IPCThreadState::talkWithDriver(bool doReceive) 
{ 
 LOG_ASSERT(mProcess->mDriverFD >= 0, "Binder driver is not opened"); 
  
 binder_write_read bwr; 
  
 // Is the read buffer empty? 
 const bool needRead = mIn.dataPosition() >= mIn.dataSize(); 
  
 // We don't want to write anything if we are still reading 
 // from data left in the input buffer and the caller 
 // has requested to read the next data. 
 const size_t outAvail = (!doReceive || needRead) ? mOut.dataSize() : 0; 
  
 bwr.write_size = outAvail; 
 bwr.write_buffer = (long unsigned int)mOut.data(); 
 
 // This is what we'll read. 
 if (doReceive && needRead) { 
  bwr.read_size = mIn.dataCapacity(); 
  bwr.read_buffer = (long unsigned int)mIn.data(); 
 } else { 
  bwr.read_size = 0; 
 } 
  
 IF_LOG_COMMANDS() { 
  TextOutput::Bundle _b(alog); 
  if (outAvail != 0) { 
   alog << "Sending commands to driver: " << indent; 
   const void* cmds = (const void*)bwr.write_buffer; 
   const void* end = ((const uint8_t*)cmds)+bwr.write_size; 
   alog << HexDump(cmds, bwr.write_size) << endl; 
   while (cmds < end) cmds = printCommand(alog, cmds); 
   alog << dedent; 
  } 
  alog << "Size of receive buffer: " << bwr.read_size 
   << ", needRead: " << needRead << ", doReceive: " << doReceive << endl; 
 } 
  
 // Return immediately if there is nothing to do. 
 if ((bwr.write_size == 0) && (bwr.read_size == 0)) return NO_ERROR; 
  
 bwr.write_consumed = 0; 
 bwr.read_consumed = 0; 
 status_t err; 
 do { 
  IF_LOG_COMMANDS() { 
   alog << "About to read/write, write size = " << mOut.dataSize() << endl; 
  } 
#if defined(HAVE_ANDROID_OS) 
  if (ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) >= 0) 
   err = NO_ERROR; 
  else 
   err = -errno; 
#else 
  err = INVALID_OPERATION; 
#endif 
  IF_LOG_COMMANDS() { 
   alog << "Finished read/write, write size = " << mOut.dataSize() << endl; 
  } 
 } while (err == -EINTR); 
  
 IF_LOG_COMMANDS() { 
  alog << "Our err: " << (void*)err << ", write consumed: " 
   << bwr.write_consumed << " (of " << mOut.dataSize() 
   << "), read consumed: " << bwr.read_consumed << endl; 
 } 
 
 if (err >= NO_ERROR) { 
  if (bwr.write_consumed > 0) { 
   if (bwr.write_consumed < (ssize_t)mOut.dataSize()) 
    mOut.remove(0, bwr.write_consumed); 
   else 
    mOut.setDataSize(0); 
  } 
  if (bwr.read_consumed > 0) { 
   mIn.setDataSize(bwr.read_consumed); 
   mIn.setDataPosition(0); 
  } 
  IF_LOG_COMMANDS() { 
   TextOutput::Bundle _b(alog); 
   alog << "Remaining data size: " << mOut.dataSize() << endl; 
   alog << "Received commands from driver: " << indent; 
   const void* cmds = mIn.data(); 
   const void* end = mIn.data() + mIn.dataSize(); 
   alog << HexDump(cmds, mIn.dataSize()) << endl; 
   while (cmds < end) cmds = printReturnCommand(alog, cmds); 
   alog << dedent; 
  } 
  return NO_ERROR; 
 } 
  
 return err; 
} 

        这里doReceive和needRead均为1,有兴趣的读者可以自已分析一下。因此,这里告诉Binder驱动程序,先执行write操作,再执行read操作,下面我们将会看到。

        最后,通过ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr)进行到Binder驱动程序的binder_ioctl函数,我们只关注cmd为BINDER_WRITE_READ的逻辑:

static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 
{ 
 int ret; 
 struct binder_proc *proc = filp->private_data; 
 struct binder_thread *thread; 
 unsigned int size = _IOC_SIZE(cmd); 
 void __user *ubuf = (void __user *)arg; 
 
 /*printk(KERN_INFO "binder_ioctl: %d:%d %x %lx\n", proc->pid, current->pid, cmd, arg);*/ 
 
 ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2); 
 if (ret) 
  return ret; 
 
 mutex_lock(&binder_lock); 
 thread = binder_get_thread(proc); 
 if (thread == NULL) { 
  ret = -ENOMEM; 
  goto err; 
 } 
 
 switch (cmd) { 
 case BINDER_WRITE_READ: { 
  struct binder_write_read bwr; 
  if (size != sizeof(struct binder_write_read)) { 
   ret = -EINVAL; 
   goto err; 
  } 
  if (copy_from_user(&bwr, ubuf, sizeof(bwr))) { 
   ret = -EFAULT; 
   goto err; 
  } 
  if (binder_debug_mask & BINDER_DEBUG_READ_WRITE) 
   printk(KERN_INFO "binder: %d:%d write %ld at %08lx, read %ld at %08lx\n", 
   proc->pid, thread->pid, bwr.write_size, bwr.write_buffer, bwr.read_size, bwr.read_buffer); 
  if (bwr.write_size > 0) { 
   ret = binder_thread_write(proc, thread, (void __user *)bwr.write_buffer, bwr.write_size, &bwr.write_consumed); 
   if (ret < 0) { 
    bwr.read_consumed = 0; 
    if (copy_to_user(ubuf, &bwr, sizeof(bwr))) 
     ret = -EFAULT; 
    goto err; 
   } 
  } 
  if (bwr.read_size > 0) { 
   ret = binder_thread_read(proc, thread, (void __user *)bwr.read_buffer, bwr.read_size, &bwr.read_consumed, filp->f_flags & O_NONBLOCK); 
   if (!list_empty(&proc->todo)) 
    wake_up_interruptible(&proc->wait); 
   if (ret < 0) { 
    if (copy_to_user(ubuf, &bwr, sizeof(bwr))) 
     ret = -EFAULT; 
    goto err; 
   } 
  } 
  if (binder_debug_mask & BINDER_DEBUG_READ_WRITE) 
   printk(KERN_INFO "binder: %d:%d wrote %ld of %ld, read return %ld of %ld\n", 
   proc->pid, thread->pid, bwr.write_consumed, bwr.write_size, bwr.read_consumed, bwr.read_size); 
  if (copy_to_user(ubuf, &bwr, sizeof(bwr))) { 
   ret = -EFAULT; 
   goto err; 
  } 
  break; 
 } 
 ...... 
 } 
 ret = 0; 
err: 
 ...... 
 return ret; 
} 

         函数首先是将用户传进来的参数拷贝到本地变量struct binder_write_read bwr中去。这里bwr.write_size > 0为true,因此,进入到binder_thread_write函数中,我们只关注BC_TRANSACTION部分的逻辑:

binder_thread_write(struct binder_proc *proc, struct binder_thread *thread, 
     void __user *buffer, int size, signed long *consumed) 
{ 
 uint32_t cmd; 
 void __user *ptr = buffer + *consumed; 
 void __user *end = buffer + size; 
 
 while (ptr < end && thread->return_error == BR_OK) { 
  if (get_user(cmd, (uint32_t __user *)ptr)) 
   return -EFAULT; 
  ptr += sizeof(uint32_t); 
  if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.bc)) { 
   binder_stats.bc[_IOC_NR(cmd)]++; 
   proc->stats.bc[_IOC_NR(cmd)]++; 
   thread->stats.bc[_IOC_NR(cmd)]++; 
  } 
  switch (cmd) { 
   ..... 
  case BC_TRANSACTION: 
  case BC_REPLY: { 
   struct binder_transaction_data tr; 
 
   if (copy_from_user(&tr, ptr, sizeof(tr))) 
    return -EFAULT; 
   ptr += sizeof(tr); 
   binder_transaction(proc, thread, &tr, cmd == BC_REPLY); 
   break; 
  } 
  ...... 
  } 
  *consumed = ptr - buffer; 
 } 
 return 0; 
} 

         首先将用户传进来的transact参数拷贝在本地变量struct binder_transaction_data tr中去,接着调用binder_transaction函数进一步处理,这里我们忽略掉无关代码:

static void 
binder_transaction(struct binder_proc *proc, struct binder_thread *thread, 
struct binder_transaction_data *tr, int reply) 
{ 
 struct binder_transaction *t; 
 struct binder_work *tcomplete; 
 size_t *offp, *off_end; 
 struct binder_proc *target_proc; 
 struct binder_thread *target_thread = NULL; 
 struct binder_node *target_node = NULL; 
 struct list_head *target_list; 
 wait_queue_head_t *target_wait; 
 struct binder_transaction *in_reply_to = NULL; 
 struct binder_transaction_log_entry *e; 
 uint32_t return_error; 
 
  ...... 
 
 if (reply) { 
   ...... 
 } else { 
  if (tr->target.handle) { 
   ...... 
  } else { 
   target_node = binder_context_mgr_node; 
   if (target_node == NULL) { 
    return_error = BR_DEAD_REPLY; 
    goto err_no_context_mgr_node; 
   } 
  } 
  ...... 
  target_proc = target_node->proc; 
  if (target_proc == NULL) { 
   return_error = BR_DEAD_REPLY; 
   goto err_dead_binder; 
  } 
  ...... 
 } 
 if (target_thread) { 
  ...... 
 } else { 
  target_list = &target_proc->todo; 
  target_wait = &target_proc->wait; 
 } 
  
 ...... 
 
 /* TODO: reuse incoming transaction for reply */ 
 t = kzalloc(sizeof(*t), GFP_KERNEL); 
 if (t == NULL) { 
  return_error = BR_FAILED_REPLY; 
  goto err_alloc_t_failed; 
 } 
 ...... 
 
 tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL); 
 if (tcomplete == NULL) { 
  return_error = BR_FAILED_REPLY; 
  goto err_alloc_tcomplete_failed; 
 } 
  
 ...... 
 
 if (!reply && !(tr->flags & TF_ONE_WAY)) 
  t->from = thread; 
 else 
  t->from = NULL; 
 t->sender_euid = proc->tsk->cred->euid; 
 t->to_proc = target_proc; 
 t->to_thread = target_thread; 
 t->code = tr->code; 
 t->flags = tr->flags; 
 t->priority = task_nice(current); 
 t->buffer = binder_alloc_buf(target_proc, tr->data_size, 
  tr->offsets_size, !reply && (t->flags & TF_ONE_WAY)); 
 if (t->buffer == NULL) { 
  return_error = BR_FAILED_REPLY; 
  goto err_binder_alloc_buf_failed; 
 } 
 t->buffer->allow_user_free = 0; 
 t->buffer->debug_id = t->debug_id; 
 t->buffer->transaction = t; 
 t->buffer->target_node = target_node; 
 if (target_node) 
  binder_inc_node(target_node, 1, 0, NULL); 
 
 offp = (size_t *)(t->buffer->data + ALIGN(tr->data_size, sizeof(void *))); 
 
 if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) { 
  ...... 
  return_error = BR_FAILED_REPLY; 
  goto err_copy_data_failed; 
 } 
 if (copy_from_user(offp, tr->data.ptr.offsets, tr->offsets_size)) { 
  ...... 
  return_error = BR_FAILED_REPLY; 
  goto err_copy_data_failed; 
 } 
 ...... 
 
 off_end = (void *)offp + tr->offsets_size; 
 for (; offp < off_end; offp++) { 
  struct flat_binder_object *fp; 
  ...... 
  fp = (struct flat_binder_object *)(t->buffer->data + *offp); 
  switch (fp->type) { 
  case BINDER_TYPE_BINDER: 
  case BINDER_TYPE_WEAK_BINDER: { 
   struct binder_ref *ref; 
   struct binder_node *node = binder_get_node(proc, fp->binder); 
   if (node == NULL) { 
    node = binder_new_node(proc, fp->binder, fp->cookie); 
    if (node == NULL) { 
     return_error = BR_FAILED_REPLY; 
     goto err_binder_new_node_failed; 
    } 
    node->min_priority = fp->flags & FLAT_BINDER_FLAG_PRIORITY_MASK; 
    node->accept_fds = !!(fp->flags & FLAT_BINDER_FLAG_ACCEPTS_FDS); 
   } 
   if (fp->cookie != node->cookie) { 
    ...... 
    goto err_binder_get_ref_for_node_failed; 
   } 
   ref = binder_get_ref_for_node(target_proc, node); 
   if (ref == NULL) { 
    return_error = BR_FAILED_REPLY; 
    goto err_binder_get_ref_for_node_failed; 
   } 
   if (fp->type == BINDER_TYPE_BINDER) 
    fp->type = BINDER_TYPE_HANDLE; 
   else 
    fp->type = BINDER_TYPE_WEAK_HANDLE; 
   fp->handle = ref->desc; 
   binder_inc_ref(ref, fp->type == BINDER_TYPE_HANDLE, &thread->todo); 
   ...... 
        
  } break; 
  ...... 
  } 
 } 
 
 if (reply) { 
  ...... 
 } else if (!(t->flags & TF_ONE_WAY)) { 
  BUG_ON(t->buffer->async_transaction != 0); 
  t->need_reply = 1; 
  t->from_parent = thread->transaction_stack; 
  thread->transaction_stack = t; 
 } else { 
  ...... 
 } 
 t->work.type = BINDER_WORK_TRANSACTION; 
 list_add_tail(&t->work.entry, target_list); 
 tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE; 
 list_add_tail(&tcomplete->entry, &thread->todo); 
 if (target_wait) 
  wake_up_interruptible(target_wait); 
 return; 
 ...... 
} 

       注意,这里传进来的参数reply为0,tr->target.handle也为0。因此,target_proc、target_thread、target_node、target_list和target_wait的值分别为:

target_node = binder_context_mgr_node; 
target_proc = target_node->proc; 
target_list = &target_proc->todo; 
target_wait = &target_proc->wait; 

       接着,分配了一个待处理事务t和一个待完成工作项tcomplete,并执行初始化工作:

/* TODO: reuse incoming transaction for reply */ 
t = kzalloc(sizeof(*t), GFP_KERNEL); 
if (t == NULL) { 
 return_error = BR_FAILED_REPLY; 
 goto err_alloc_t_failed; 
} 
...... 
 
tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL); 
if (tcomplete == NULL) { 
 return_error = BR_FAILED_REPLY; 
 goto err_alloc_tcomplete_failed; 
} 
 
...... 
 
if (!reply && !(tr->flags & TF_ONE_WAY)) 
 t->from = thread; 
else 
 t->from = NULL; 
t->sender_euid = proc->tsk->cred->euid; 
t->to_proc = target_proc; 
t->to_thread = target_thread; 
t->code = tr->code; 
t->flags = tr->flags; 
t->priority = task_nice(current); 
t->buffer = binder_alloc_buf(target_proc, tr->data_size, 
 tr->offsets_size, !reply && (t->flags & TF_ONE_WAY)); 
if (t->buffer == NULL) { 
 return_error = BR_FAILED_REPLY; 
 goto err_binder_alloc_buf_failed; 
} 
t->buffer->allow_user_free = 0; 
t->buffer->debug_id = t->debug_id; 
t->buffer->transaction = t; 
t->buffer->target_node = target_node; 
if (target_node) 
 binder_inc_node(target_node, 1, 0, NULL); 
 
offp = (size_t *)(t->buffer->data + ALIGN(tr->data_size, sizeof(void *))); 
 
if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) { 
 ...... 
 return_error = BR_FAILED_REPLY; 
 goto err_copy_data_failed; 
} 
if (copy_from_user(offp, tr->data.ptr.offsets, tr->offsets_size)) { 
 ...... 
 return_error = BR_FAILED_REPLY; 
 goto err_copy_data_failed; 
} 

         注意,这里的事务t是要交给target_proc处理的,在这个场景之下,就是Service Manager了。因此,下面的语句:

t->buffer = binder_alloc_buf(target_proc, tr->data_size, 
  tr->offsets_size, !reply && (t->flags & TF_ONE_WAY)); 

         就是在Service Manager的进程空间中分配一块内存来保存用户传进入的参数了:

if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) { 
 ...... 
 return_error = BR_FAILED_REPLY; 
 goto err_copy_data_failed; 
} 
if (copy_from_user(offp, tr->data.ptr.offsets, tr->offsets_size)) { 
 ...... 
 return_error = BR_FAILED_REPLY; 
 goto err_copy_data_failed; 
} 

         由于现在target_node要被使用了,增加它的引用计数:

if (target_node) 
  binder_inc_node(target_node, 1, 0, NULL); 

        接下去的for循环,就是用来处理传输数据中的Binder对象了。在我们的场景中,有一个类型为BINDER_TYPE_BINDER的Binder实体MediaPlayerService:

 switch (fp->type) { 
 case BINDER_TYPE_BINDER: 
 case BINDER_TYPE_WEAK_BINDER: { 
struct binder_ref *ref; 
struct binder_node *node = binder_get_node(proc, fp->binder); 
if (node == NULL) { 
 node = binder_new_node(proc, fp->binder, fp->cookie); 
 if (node == NULL) { 
  return_error = BR_FAILED_REPLY; 
  goto err_binder_new_node_failed; 
 } 
 node->min_priority = fp->flags & FLAT_BINDER_FLAG_PRIORITY_MASK; 
 node->accept_fds = !!(fp->flags & FLAT_BINDER_FLAG_ACCEPTS_FDS); 
} 
if (fp->cookie != node->cookie) { 
 ...... 
 goto err_binder_get_ref_for_node_failed; 
} 
ref = binder_get_ref_for_node(target_proc, node); 
if (ref == NULL) { 
 return_error = BR_FAILED_REPLY; 
 goto err_binder_get_ref_for_node_failed; 
} 
if (fp->type == BINDER_TYPE_BINDER) 
 fp->type = BINDER_TYPE_HANDLE; 
else 
 fp->type = BINDER_TYPE_WEAK_HANDLE; 
fp->handle = ref->desc; 
binder_inc_ref(ref, fp->type == BINDER_TYPE_HANDLE, &thread->todo); 
...... 
       
} break; 

        由于是第一次在Binder驱动程序中传输这个MediaPlayerService,调用binder_get_node函数查询这个Binder实体时,会返回空,于是binder_new_node在proc中新建一个,下次就可以直接使用了。

        现在,由于要把这个Binder实体MediaPlayerService交给target_proc,也就是Service Manager来管理,也就是说Service Manager要引用这个MediaPlayerService了,于是通过binder_get_ref_for_node为MediaPlayerService创建一个引用,并且通过binder_inc_ref来增加这个引用计数,防止这个引用还在使用过程当中就被销毁。注意,到了这里的时候,t->buffer中的flat_binder_obj的type已经改为BINDER_TYPE_HANDLE,handle已经改为ref->desc,跟原来不一样了,因为这个flat_binder_obj是最终是要传给Service Manager的,而Service Manager只能够通过句柄值来引用这个Binder实体。

        最后,把待处理事务加入到target_list列表中去:

                 list_add_tail(&t->work.entry, target_list);  

        并且把待完成工作项加入到本线程的todo等待执行列表中去:

                    list_add_tail(&tcomplete->entry, &thread->todo);  

        现在目标进程有事情可做了,于是唤醒它:

             if (target_wait)  
                          wake_up_interruptible(target_wait);   

       这里就是要唤醒Service Manager进程了。回忆一下前面这篇文章,此时, Service Manager正在binder_t浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路hread_read函数中调用wait_event_interruptible进入休眠状态。

       这里我们先忽略一下Service Manager被唤醒之后的场景,继续MedaPlayerService的启动过程,然后再回来。

       回到binder_ioctl函数,bwr.read_size > 0为true,于是进入binder_thread_read函数:

static int 
binder_thread_read(struct binder_proc *proc, struct binder_thread *thread, 
     void __user *buffer, int size, signed long *consumed, int non_block) 
{ 
 void __user *ptr = buffer + *consumed; 
 void __user *end = buffer + size; 
 
 int ret = 0; 
 int wait_for_proc_work; 
 
 if (*consumed == 0) { 
  if (put_user(BR_NOOP, (uint32_t __user *)ptr)) 
   return -EFAULT; 
  ptr += sizeof(uint32_t); 
 } 
 
retry: 
 wait_for_proc_work = thread->transaction_stack == NULL && list_empty(&thread->todo); 
  
 ....... 
 
 if (wait_for_proc_work) { 
  ....... 
 } else { 
  if (non_block) { 
   if (!binder_has_thread_work(thread)) 
    ret = -EAGAIN; 
  } else 
   ret = wait_event_interruptible(thread->wait, binder_has_thread_work(thread)); 
 } 
  
 ...... 
 
 while (1) { 
  uint32_t cmd; 
  struct binder_transaction_data tr; 
  struct binder_work *w; 
  struct binder_transaction *t = NULL; 
 
  if (!list_empty(&thread->todo)) 
   w = list_first_entry(&thread->todo, struct binder_work, entry); 
  else if (!list_empty(&proc->todo) && wait_for_proc_work) 
   w = list_first_entry(&proc->todo, struct binder_work, entry); 
  else { 
   if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */ 
    goto retry; 
   break; 
  } 
 
  if (end - ptr < sizeof(tr) + 4) 
   break; 
 
  switch (w->type) { 
  ...... 
  case BINDER_WORK_TRANSACTION_COMPLETE: { 
   cmd = BR_TRANSACTION_COMPLETE; 
   if (put_user(cmd, (uint32_t __user *)ptr)) 
    return -EFAULT; 
   ptr += sizeof(uint32_t); 
 
   binder_stat_br(proc, thread, cmd); 
   if (binder_debug_mask & BINDER_DEBUG_TRANSACTION_COMPLETE) 
    printk(KERN_INFO "binder: %d:%d BR_TRANSACTION_COMPLETE\n", 
    proc->pid, thread->pid); 
 
   list_del(&w->entry); 
   kfree(w); 
   binder_stats.obj_deleted[BINDER_STAT_TRANSACTION_COMPLETE]++; 
            } break; 
  ...... 
  } 
 
  if (!t) 
   continue; 
 
  ...... 
 } 
 
done: 
 ...... 
 return 0; 
} 

        这里,thread->transaction_stack和thread->todo均不为空,于是wait_for_proc_work为false,由于binder_has_thread_work的时候,返回true,这里因为thread->todo不为空,因此,线程虽然调用了wait_event_interruptible,但是不会睡眠,于是继续往下执行。

        由于thread->todo不为空,执行下列语句:

if (!list_empty(&thread->todo)) 
  w = list_first_entry(&thread->todo, struct binder_work, entry); 

        w->type为BINDER_WORK_TRANSACTION_COMPLETE,这是在上面的binder_transaction函数设置的,于是执行:

 switch (w->type) { 
 ...... 
 case BINDER_WORK_TRANSACTION_COMPLETE: { 
cmd = BR_TRANSACTION_COMPLETE; 
if (put_user(cmd, (uint32_t __user *)ptr)) 
 return -EFAULT; 
ptr += sizeof(uint32_t); 
 
  ...... 
list_del(&w->entry); 
kfree(w); 
   
} break; 
...... 
 } 

        这里就将w从thread->todo删除了。由于这里t为空,重新执行while循环,这时由于已经没有事情可做了,最后就返回到binder_ioctl函数中。注间,这里一共往用户传进来的缓冲区buffer写入了两个整数,分别是BR_NOOP和BR_TRANSACTION_COMPLETE。

        binder_ioctl函数返回到用户空间之前,把数据消耗情况拷贝回用户空间中:

if (copy_to_user(ubuf, &bwr, sizeof(bwr))) { 
 ret = -EFAULT; 
 goto err; 
} 

        最后返回到IPCThreadState::talkWithDriver函数中,执行下面语句: 

 if (err >= NO_ERROR) { 
  if (bwr.write_consumed > 0) { 
   if (bwr.write_consumed < (ssize_t)mOut.dataSize()) 
    mOut.remove(0, bwr.write_consumed); 
   else 
    mOut.setDataSize(0); 
  } 
  if (bwr.read_consumed > 0) { 
   mIn.setDataSize(bwr.read_consumed); 
   mIn.setDataPosition(0);
} ...... return NO_ERROR; }

        首先是把mOut的数据清空:
                          mOut.setDataSize(0);  

       然后设置已经读取的内容的大小:

                          mIn.setDataSize(bwr.read_consumed);  
                          mIn.setDataPosition(0);
  

        然后返回到IPCThreadState::waitForResponse函数中。在IPCThreadState::waitForResponse函数,先是从mIn读出一个整数,这个便是BR_NOOP了,这是一个空操作,什么也不做。然后继续进入IPCThreadState::talkWithDriver函数中。

        这时候,下面语句执行后:

                       const bool needRead = mIn.dataPosition() >= mIn.dataSize();  

        needRead为false,因为在mIn中,尚有一个整数BR_TRANSACTION_COMPLETE未读出。

       这时候,下面语句执行后:

                       const size_t outAvail = (!doReceive || needRead) ? mOut.dataSize() : 0;  

        outAvail等于0。因此,最后bwr.write_size和bwr.read_size均为0,IPCThreadState::talkWithDriver函数什么也不做,直接返回到IPCThreadState::waitForResponse函数中。在IPCThreadState::waitForResponse函数,又继续从mIn读出一个整数,这个便是BR_TRANSACTION_COMPLETE:

switch (cmd) { 
case BR_TRANSACTION_COMPLETE: 
  if (!reply && !acquireResult) goto finish; 
  break; 
...... 
} 

        reply不为NULL,因此,IPCThreadState::waitForResponse的循环没有结束,继续执行,又进入到IPCThreadState::talkWithDrive中。

        这次,needRead就为true了,而outAvail仍为0,所以bwr.read_size不为0,bwr.write_size为0。于是通过:

                       ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr)  

        进入到Binder驱动程序中的binder_ioctl函数中。由于bwr.write_size为0,bwr.read_size不为0,这次直接就进入到binder_thread_read函数中。这时候,thread->transaction_stack不等于0,但是thread->todo为空,于是线程就通过:
[cpp] view plain copy 在CODE上查看代码片派生到我的代码片
wait_event_interruptible(thread->wait, binder_has_thread_work(thread));  

        进入睡眠状态,等待Service Manager来唤醒了。

        现在,我们可以回到Service Manager被唤醒的过程了。我们接着前面浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路这篇文章的最后,继续描述。此时, Service Manager正在binder_thread_read函数中调用wait_event_interruptible_exclusive进入休眠状态。上面被MediaPlayerService启动后进程唤醒后,继续执行binder_thread_read函数:

static int 
binder_thread_read(struct binder_proc *proc, struct binder_thread *thread, 
     void __user *buffer, int size, signed long *consumed, int non_block) 
{ 
 void __user *ptr = buffer + *consumed; 
 void __user *end = buffer + size; 
 
 int ret = 0; 
 int wait_for_proc_work; 
 
 if (*consumed == 0) { 
  if (put_user(BR_NOOP, (uint32_t __user *)ptr)) 
   return -EFAULT; 
  ptr += sizeof(uint32_t); 
 } 
 
retry: 
 wait_for_proc_work = thread->transaction_stack == NULL && list_empty(&thread->todo); 
 
 ...... 
 
 if (wait_for_proc_work) { 
  ...... 
  if (non_block) { 
   if (!binder_has_proc_work(proc, thread)) 
    ret = -EAGAIN; 
  } else 
   ret = wait_event_interruptible_exclusive(proc->wait, binder_has_proc_work(proc, thread)); 
 } else { 
  ...... 
 } 
  
 ...... 
 
 while (1) { 
  uint32_t cmd; 
  struct binder_transaction_data tr; 
  struct binder_work *w; 
  struct binder_transaction *t = NULL; 
 
  if (!list_empty(&thread->todo)) 
   w = list_first_entry(&thread->todo, struct binder_work, entry); 
  else if (!list_empty(&proc->todo) && wait_for_proc_work) 
   w = list_first_entry(&proc->todo, struct binder_work, entry); 
  else { 
   if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */ 
    goto retry; 
   break; 
  } 
 
  if (end - ptr < sizeof(tr) + 4) 
   break; 
 
  switch (w->type) { 
  case BINDER_WORK_TRANSACTION: { 
   t = container_of(w, struct binder_transaction, work); 
          } break; 
  ...... 
  } 
 
  if (!t) 
   continue; 
 
  BUG_ON(t->buffer == NULL); 
  if (t->buffer->target_node) { 
   struct binder_node *target_node = t->buffer->target_node; 
   tr.target.ptr = target_node->ptr; 
   tr.cookie = target_node->cookie; 
   ...... 
   cmd = BR_TRANSACTION; 
  } else { 
   ...... 
  } 
  tr.code = t->code; 
  tr.flags = t->flags; 
  tr.sender_euid = t->sender_euid; 
 
  if (t->from) { 
   struct task_struct *sender = t->from->proc->tsk; 
   tr.sender_pid = task_tgid_nr_ns(sender, current->nsproxy->pid_ns); 
  } else { 
   tr.sender_pid = 0; 
  } 
 
  tr.data_size = t->buffer->data_size; 
  tr.offsets_size = t->buffer->offsets_size; 
  tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset; 
  tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *)); 
 
  if (put_user(cmd, (uint32_t __user *)ptr)) 
   return -EFAULT; 
  ptr += sizeof(uint32_t); 
  if (copy_to_user(ptr, &tr, sizeof(tr))) 
   return -EFAULT; 
  ptr += sizeof(tr); 
 
  ...... 
 
  list_del(&t->work.entry); 
  t->buffer->allow_user_free = 1; 
  if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) { 
   t->to_parent = thread->transaction_stack; 
   t->to_thread = thread; 
   thread->transaction_stack = t; 
  } else { 
   t->buffer->transaction = NULL; 
   kfree(t); 
   binder_stats.obj_deleted[BINDER_STAT_TRANSACTION]++; 
  } 
  break; 
 } 
 
done: 
 
 ...... 
 return 0; 
} 

        Service Manager被唤醒之后,就进入while循环开始处理事务了。这里wait_for_proc_work等于1,并且proc->todo不为空,所以从proc->todo列表中得到第一个工作项:

                   w = list_first_entry(&proc->todo, struct binder_work, entry);  

        从上面的描述中,我们知道,这个工作项的类型为BINDER_WORK_TRANSACTION,于是通过下面语句得到事务项:

                    t = container_of(w, struct binder_transaction, work);  

       接着就是把事务项t中的数据拷贝到本地局部变量struct binder_transaction_data tr中去了: 

if (t->buffer->target_node) { 
 struct binder_node *target_node = t->buffer->target_node; 
 tr.target.ptr = target_node->ptr; 
 tr.cookie = target_node->cookie; 
 ...... 
 cmd = BR_TRANSACTION; 
} else { 
 ...... 
} 
tr.code = t->code; 
tr.flags = t->flags; 
tr.sender_euid = t->sender_euid; 
 
if (t->from) { 
 struct task_struct *sender = t->from->proc->tsk; 
 tr.sender_pid = task_tgid_nr_ns(sender, current->nsproxy->pid_ns); 
} else { 
 tr.sender_pid = 0; 
} 
 
tr.data_size = t->buffer->data_size; 
tr.offsets_size = t->buffer->offsets_size; 
tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset; 
tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *)); 

        这里有一个非常重要的地方,是Binder进程间通信机制的精髓所在:

tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset; 
tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *)); 


        t->buffer->data所指向的地址是内核空间的,现在要把数据返回给Service Manager进程的用户空间,而Service Manager进程的用户空间是不能访问内核空间的数据的,所以这里要作一下处理。怎么处理呢?我们在学面向对象语言的时候,对象的拷贝有深拷贝和浅拷贝之分,深拷贝是把另外分配一块新内存,然后把原始对象的内容搬过去,浅拷贝是并没有为新对象分配一块新空间,而只是分配一个引用,而个引用指向原始对象。Binder机制用的是类似浅拷贝的方法,通过在用户空间分配一个虚拟地址,然后让这个用户空间虚拟地址与 t->buffer->data这个内核空间虚拟地址指向同一个物理地址,这样就可以实现浅拷贝了。怎么样用户空间和内核空间的虚拟地址同时指向同一个物理地址呢?请参考前面一篇文章浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路,那里有详细描述。这里只要将t->buffer->data加上一个偏移值proc->user_buffer_offset就可以得到t->buffer->data对应的用户空间虚拟地址了。调整了tr.data.ptr.buffer的值之后,不要忘记也要一起调整tr.data.ptr.offsets的值。
 

       接着就是把tr的内容拷贝到用户传进来的缓冲区去了,指针ptr指向这个用户缓冲区的地址:

if (put_user(cmd, (uint32_t __user *)ptr)) 
 return -EFAULT; 
ptr += sizeof(uint32_t); 
if (copy_to_user(ptr, &tr, sizeof(tr))) 
 return -EFAULT; 
ptr += sizeof(tr); 

         这里可以看出,这里只是对作tr.data.ptr.bufferr和tr.data.ptr.offsets的内容作了浅拷贝。

         最后,由于已经处理了这个事务,要把它从todo列表中删除:

list_del(&t->work.entry); 
t->buffer->allow_user_free = 1; 
if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) { 
 t->to_parent = thread->transaction_stack; 
 t->to_thread = thread; 
 thread->transaction_stack = t; 
} else { 
 t->buffer->transaction = NULL; 
 kfree(t); 
 binder_stats.obj_deleted[BINDER_STAT_TRANSACTION]++; 
} 

         注意,这里的cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)为true,表明这个事务虽然在驱动程序中已经处理完了,但是它仍然要等待Service Manager完成之后,给驱动程序一个确认,也就是需要等待回复,于是把当前事务t放在thread->transaction_stack队列的头部:

t->to_parent = thread->transaction_stack; 
t->to_thread = thread; 
thread->transaction_stack = t; 

         如果cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)为false,那就不需要等待回复了,直接把事务t删掉。

         这个while最后通过一个break跳了出来,最后返回到binder_ioctl函数中:

static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 
{ 
 int ret; 
 struct binder_proc *proc = filp->private_data; 
 struct binder_thread *thread; 
 unsigned int size = _IOC_SIZE(cmd); 
 void __user *ubuf = (void __user *)arg; 
 
 ...... 
 
 switch (cmd) { 
 case BINDER_WRITE_READ: { 
  struct binder_write_read bwr; 
  if (size != sizeof(struct binder_write_read)) { 
   ret = -EINVAL; 
   goto err; 
  } 
  if (copy_from_user(&bwr, ubuf, sizeof(bwr))) { 
   ret = -EFAULT; 
   goto err; 
  } 
  ...... 
  if (bwr.read_size > 0) { 
   ret = binder_thread_read(proc, thread, (void __user *)bwr.read_buffer, bwr.read_size, &bwr.read_consumed, filp->f_flags & O_NONBLOCK); 
   if (!list_empty(&proc->todo)) 
    wake_up_interruptible(&proc->wait); 
   if (ret < 0) { 
    if (copy_to_user(ubuf, &bwr, sizeof(bwr))) 
     ret = -EFAULT; 
    goto err; 
   } 
  } 
  ...... 
  if (copy_to_user(ubuf, &bwr, sizeof(bwr))) { 
   ret = -EFAULT; 
   goto err; 
  } 
  break; 
  } 
 ...... 
 default: 
  ret = -EINVAL; 
  goto err; 
 } 
 ret = 0; 
err: 
 ...... 
 return ret; 
} 

         从binder_thread_read返回来后,再看看proc->todo是否还有事务等待处理,如果是,就把睡眠在proc->wait队列的线程唤醒来处理。最后,把本地变量struct binder_write_read bwr的内容拷贝回到用户传进来的缓冲区中,就返回了。

        这里就是返回到frameworks/base/cmds/servicemanager/binder.c文件中的binder_loop函数了:

void binder_loop(struct binder_state *bs, binder_handler func) 
{ 
 int res; 
 struct binder_write_read bwr; 
 unsigned readbuf[32]; 
 
 bwr.write_size = 0; 
 bwr.write_consumed = 0; 
 bwr.write_buffer = 0; 
  
 readbuf[0] = BC_ENTER_LOOPER; 
 binder_write(bs, readbuf, sizeof(unsigned)); 
 
 for (;;) { 
  bwr.read_size = sizeof(readbuf); 
  bwr.read_consumed = 0; 
  bwr.read_buffer = (unsigned) readbuf; 
 
  res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr); 
 
  if (res < 0) { 
   LOGE("binder_loop: ioctl failed (%s)\n", strerror(errno)); 
   break; 
  } 
 
  res = binder_parse(bs, 0, readbuf, bwr.read_consumed, func); 
  if (res == 0) { 
   LOGE("binder_loop: unexpected reply?!\n"); 
   break; 
  } 
  if (res < 0) { 
   LOGE("binder_loop: io error %d %s\n", res, strerror(errno)); 
   break; 
  } 
 } 
} 

       返回来的数据都放在readbuf中,接着调用binder_parse进行解析:

int binder_parse(struct binder_state *bs, struct binder_io *bio, 
     uint32_t *ptr, uint32_t size, binder_handler func) 
{ 
 int r = 1; 
 uint32_t *end = ptr + (size / 4); 
 
 while (ptr < end) { 
  uint32_t cmd = *ptr++; 
  ...... 
  case BR_TRANSACTION: { 
   struct binder_txn *txn = (void *) ptr; 
   if ((end - ptr) * sizeof(uint32_t) < sizeof(struct binder_txn)) { 
    LOGE("parse: txn too small!\n"); 
    return -1; 
   } 
   binder_dump_txn(txn); 
   if (func) { 
    unsigned rdata[256/4]; 
    struct binder_io msg; 
    struct binder_io reply; 
    int res; 
 
    bio_init(&reply, rdata, sizeof(rdata), 4); 
    bio_init_from_txn(&msg, txn); 
    res = func(bs, txn, &msg, &reply); 
    binder_send_reply(bs, &reply, txn->data, res); 
   } 
   ptr += sizeof(*txn) / sizeof(uint32_t); 
   break; 
        } 
  ...... 
  default: 
   LOGE("parse: OOPS %d\n", cmd); 
   return -1; 
  } 
 } 
 
 return r; 
} 

        首先把从Binder驱动程序读出来的数据转换为一个struct binder_txn结构体,保存在txn本地变量中,struct binder_txn定义在frameworks/base/cmds/servicemanager/binder.h文件中:

struct binder_txn 
{ 
 void *target; 
 void *cookie; 
 uint32_t code; 
 uint32_t flags; 
 
 uint32_t sender_pid; 
 uint32_t sender_euid; 
 
 uint32_t data_size; 
 uint32_t offs_size; 
 void *data; 
 void *offs; 
}; 

       函数中还用到了另外一个数据结构struct binder_io,也是定义在frameworks/base/cmds/servicemanager/binder.h文件中:

struct binder_io 
{ 
 char *data;   /* pointer to read/write from */ 
 uint32_t *offs;  /* array of offsets */ 
 uint32_t data_avail; /* bytes available in data buffer */ 
 uint32_t offs_avail; /* entries available in offsets array */ 
 
 char *data0;   /* start of data buffer */ 
 uint32_t *offs0;  /* start of offsets buffer */ 
 uint32_t flags; 
 uint32_t unused; 
}; 

       接着往下看,函数调bio_init来初始化reply变量:

void bio_init(struct binder_io *bio, void *data, 
    uint32_t maxdata, uint32_t maxoffs) 
{ 
 uint32_t n = maxoffs * sizeof(uint32_t); 
 
 if (n > maxdata) { 
  bio->flags = BIO_F_OVERFLOW; 
  bio->data_avail = 0; 
  bio->offs_avail = 0; 
  return; 
 } 
 
 bio->data = bio->data0 = data + n; 
 bio->offs = bio->offs0 = data; 
 bio->data_avail = maxdata - n; 
 bio->offs_avail = maxoffs; 
 bio->flags = 0; 
} 

       接着又调用bio_init_from_txn来初始化msg变量:

void bio_init_from_txn(struct binder_io *bio, struct binder_txn *txn) 
{ 
 bio->data = bio->data0 = txn->data; 
 bio->offs = bio->offs0 = txn->offs; 
 bio->data_avail = txn->data_size; 
 bio->offs_avail = txn->offs_size / 4; 
 bio->flags = BIO_F_SHARED; 
} 

      最后,真正进行处理的函数是从参数中传进来的函数指针func,这里就是定义在frameworks/base/cmds/servicemanager/service_manager.c文件中的svcmgr_handler函数:

int svcmgr_handler(struct binder_state *bs, 
     struct binder_txn *txn, 
     struct binder_io *msg, 
     struct binder_io *reply) 
{ 
 struct svcinfo *si; 
 uint16_t *s; 
 unsigned len; 
 void *ptr; 
 uint32_t strict_policy; 
 
 if (txn->target != svcmgr_handle) 
  return -1; 
 
 // Equivalent to Parcel::enforceInterface(), reading the RPC 
 // header with the strict mode policy mask and the interface name. 
 // Note that we ignore the strict_policy and don't propagate it 
 // further (since we do no outbound RPCs anyway). 
 strict_policy = bio_get_uint32(msg); 
 s = bio_get_string16(msg, &len); 
 if ((len != (sizeof(svcmgr_id) / 2)) || 
  memcmp(svcmgr_id, s, sizeof(svcmgr_id))) { 
   fprintf(stderr,"invalid id %s\n", str8(s)); 
   return -1; 
 } 
 
 switch(txn->code) { 
 ...... 
 case SVC_MGR_ADD_SERVICE: 
  s = bio_get_string16(msg, &len); 
  ptr = bio_get_ref(msg); 
  if (do_add_service(bs, s, len, ptr, txn->sender_euid)) 
   return -1; 
  break; 
 ...... 
 } 
 
 bio_put_uint32(reply, 0); 
 return 0; 
} 

         回忆一下,在BpServiceManager::addService时,传给Binder驱动程序的参数为:

writeInt32(IPCThreadState::self()->getStrictModePolicy() | STRICT_MODE_PENALTY_GATHER); 
writeString16("android.os.IServiceManager"); 
writeString16("media.player"); 
writeStrongBinder(new MediaPlayerService()); 

         这里的语句:

strict_policy = bio_get_uint32(msg); 
s = bio_get_string16(msg, &len); 
s = bio_get_string16(msg, &len); 
ptr = bio_get_ref(msg); 

         就是依次把它们读取出来了,这里,我们只要看一下bio_get_ref的实现。先看一个数据结构struct binder_obj的定义:

struct binder_object 
{ 
 uint32_t type; 
 uint32_t flags; 
 void *pointer; 
 void *cookie; 
}; 

        这个结构体其实就是对应struct flat_binder_obj的。
        接着看bio_get_ref实现:

void *bio_get_ref(struct binder_io *bio) 
{ 
 struct binder_object *obj; 
 
 obj = _bio_get_obj(bio); 
 if (!obj) 
  return 0; 
 
 if (obj->type == BINDER_TYPE_HANDLE) 
  return obj->pointer; 
 
 return 0; 
} 

       _bio_get_obj这个函数就不跟进去看了,它的作用就是从binder_io中取得第一个还没取获取过的binder_object。在这个场景下,就是我们最开始传过来代表MediaPlayerService的flat_binder_obj了,这个原始的flat_binder_obj的type为BINDER_TYPE_BINDER,binder为指向MediaPlayerService的弱引用的地址。在前面我们说过,在Binder驱动驱动程序里面,会把这个flat_binder_obj的type改为BINDER_TYPE_HANDLE,handle改为一个句柄值。这里的handle值就等于obj->pointer的值。

        回到svcmgr_handler函数,调用do_add_service进一步处理:


int do_add_service(struct binder_state *bs, 
     uint16_t *s, unsigned len, 
     void *ptr, unsigned uid) 
{ 
 struct svcinfo *si; 
// LOGI("add_service('%s',%p) uid=%d\n", str8(s), ptr, uid); 
 
 if (!ptr || (len == 0) || (len > 127)) 
  return -1; 
 
 if (!svc_can_register(uid, s)) { 
  LOGE("add_service('%s',%p) uid=%d - PERMISSION DENIED\n", 
    str8(s), ptr, uid); 
  return -1; 
 } 
 
 si = find_svc(s, len); 
 if (si) { 
  if (si->ptr) { 
   LOGE("add_service('%s',%p) uid=%d - ALREADY REGISTERED\n", 
     str8(s), ptr, uid); 
   return -1; 
  } 
  si->ptr = ptr; 
 } else { 
  si = malloc(sizeof(*si) + (len + 1) * sizeof(uint16_t)); 
  if (!si) { 
   LOGE("add_service('%s',%p) uid=%d - OUT OF MEMORY\n", 
     str8(s), ptr, uid); 
   return -1; 
  } 
  si->ptr = ptr; 
  si->len = len; 
  memcpy(si->name, s, (len + 1) * sizeof(uint16_t)); 
  si->name[len] = '\0'; 
  si->death.func = svcinfo_death; 
  si->death.ptr = si; 
  si->next = svclist; 
  svclist = si; 
 } 
 
 binder_acquire(bs, ptr); 
 binder_link_to_death(bs, ptr, &si->death); 
 return 0; 
} 

        这个函数的实现很简单,就是把MediaPlayerService这个Binder实体的引用写到一个struct svcinfo结构体中,主要是它的名称和句柄值,然后插入到链接svclist的头部去。这样,Client来向Service Manager查询服务接口时,只要给定服务名称,Service Manger就可以返回相应的句柄值了。

        这个函数执行完成后,返回到svcmgr_handler函数,函数的最后,将一个错误码0写到reply变量中去,表示一切正常:

             bio_put_uint32(reply, 0);  

       svcmgr_handler函数执行完成后,返回到binder_parse函数,执行下面语句:

               binder_send_reply(bs, &reply, txn->data, res);  

       我们看一下binder_send_reply的实现,从函数名就可以猜到它要做什么了,告诉Binder驱动程序,它完成了Binder驱动程序交给它的任务了。

void binder_send_reply(struct binder_state *bs, 
      struct binder_io *reply, 
      void *buffer_to_free, 
      int status) 
{ 
 struct { 
  uint32_t cmd_free; 
  void *buffer; 
  uint32_t cmd_reply; 
  struct binder_txn txn; 
 } __attribute__((packed)) data; 
 
 data.cmd_free = BC_FREE_BUFFER; 
 data.buffer = buffer_to_free; 
 data.cmd_reply = BC_REPLY; 
 data.txn.target = 0; 
 data.txn.cookie = 0; 
 data.txn.code = 0; 
 if (status) { 
  data.txn.flags = TF_STATUS_CODE; 
  data.txn.data_size = sizeof(int); 
  data.txn.offs_size = 0; 
  data.txn.data = &status; 
  data.txn.offs = 0; 
 } else { 
  data.txn.flags = 0; 
  data.txn.data_size = reply->data - reply->data0; 
  data.txn.offs_size = ((char*) reply->offs) - ((char*) reply->offs0); 
  data.txn.data = reply->data0; 
  data.txn.offs = reply->offs0; 
 } 
 binder_write(bs, &data, sizeof(data)); 
} 

       从这里可以看出,binder_send_reply告诉Binder驱动程序执行BC_FREE_BUFFER和BC_REPLY命令,前者释放之前在binder_transaction分配的空间,地址为buffer_to_free,buffer_to_free这个地址是Binder驱动程序把自己在内核空间用的地址转换成用户空间地址再传给Service Manager的,所以Binder驱动程序拿到这个地址后,知道怎么样释放这个空间;后者告诉MediaPlayerService,它的addService操作已经完成了,错误码是0,保存在data.txn.data中。

       再来看binder_write函数:

int binder_write(struct binder_state *bs, void *data, unsigned len) 
{ 
 struct binder_write_read bwr; 
 int res; 
 bwr.write_size = len; 
 bwr.write_consumed = 0; 
 bwr.write_buffer = (unsigned) data; 
 bwr.read_size = 0; 
 bwr.read_consumed = 0; 
 bwr.read_buffer = 0; 
 res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr); 
 if (res < 0) { 
  fprintf(stderr,"binder_write: ioctl failed (%s)\n", 
    strerror(errno)); 
 } 
 return res; 
} 

       这里可以看出,只有写操作,没有读操作,即read_size为0。

       这里又是一个ioctl的BINDER_WRITE_READ操作。直入到驱动程序的binder_ioctl函数后,执行BINDER_WRITE_READ命令,这里就不累述了。

       最后,从binder_ioctl执行到binder_thread_write函数,我们首先看第一个命令BC_FREE_BUFFER:

int 
binder_thread_write(struct binder_proc *proc, struct binder_thread *thread, 
     void __user *buffer, int size, signed long *consumed) 
{ 
 uint32_t cmd; 
 void __user *ptr = buffer + *consumed; 
 void __user *end = buffer + size; 
 
 while (ptr < end && thread->return_error == BR_OK) { 
  if (get_user(cmd, (uint32_t __user *)ptr)) 
   return -EFAULT; 
  ptr += sizeof(uint32_t); 
  if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.bc)) { 
   binder_stats.bc[_IOC_NR(cmd)]++; 
   proc->stats.bc[_IOC_NR(cmd)]++; 
   thread->stats.bc[_IOC_NR(cmd)]++; 
  } 
  switch (cmd) { 
  ...... 
  case BC_FREE_BUFFER: { 
   void __user *data_ptr; 
   struct binder_buffer *buffer; 
 
   if (get_user(data_ptr, (void * __user *)ptr)) 
    return -EFAULT; 
   ptr += sizeof(void *); 
 
   buffer = binder_buffer_lookup(proc, data_ptr); 
   if (buffer == NULL) { 
    binder_user_error("binder: %d:%d " 
     "BC_FREE_BUFFER u%p no match\n", 
     proc->pid, thread->pid, data_ptr); 
    break; 
   } 
   if (!buffer->allow_user_free) { 
    binder_user_error("binder: %d:%d " 
     "BC_FREE_BUFFER u%p matched " 
     "unreturned buffer\n", 
     proc->pid, thread->pid, data_ptr); 
    break; 
   } 
   if (binder_debug_mask & BINDER_DEBUG_FREE_BUFFER) 
    printk(KERN_INFO "binder: %d:%d BC_FREE_BUFFER u%p found buffer %d for %s transaction\n", 
    proc->pid, thread->pid, data_ptr, buffer->debug_id, 
    buffer->transaction ? "active" : "finished"); 
 
   if (buffer->transaction) { 
    buffer->transaction->buffer = NULL; 
    buffer->transaction = NULL; 
   } 
   if (buffer->async_transaction && buffer->target_node) { 
    BUG_ON(!buffer->target_node->has_async_transaction); 
    if (list_empty(&buffer->target_node->async_todo)) 
     buffer->target_node->has_async_transaction = 0; 
    else 
     list_move_tail(buffer->target_node->async_todo.next, &thread->todo); 
   } 
   binder_transaction_buffer_release(proc, buffer, NULL); 
   binder_free_buf(proc, buffer); 
   break; 
        } 
 
  ...... 
  *consumed = ptr - buffer; 
 } 
 return 0; 
} 

       首先通过看这个语句:

get_user(data_ptr, (void * __user *)ptr) 

       这个是获得要删除的Buffer的用户空间地址,接着通过下面这个语句来找到这个地址对应的struct binder_buffer信息:

            buffer = binder_buffer_lookup(proc, data_ptr);  

       因为这个空间是前面在binder_transaction里面分配的,所以这里一定能找到。

       最后,就可以释放这块内存了:

            binder_transaction_buffer_release(proc, buffer, NULL);  
            binder_free_buf(proc, buffer);  

       再来看另外一个命令BC_REPLY:

int 
binder_thread_write(struct binder_proc *proc, struct binder_thread *thread, 
     void __user *buffer, int size, signed long *consumed) 
{ 
 uint32_t cmd; 
 void __user *ptr = buffer + *consumed; 
 void __user *end = buffer + size; 
 
 while (ptr < end && thread->return_error == BR_OK) { 
  if (get_user(cmd, (uint32_t __user *)ptr)) 
   return -EFAULT; 
  ptr += sizeof(uint32_t); 
  if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.bc)) { 
   binder_stats.bc[_IOC_NR(cmd)]++; 
   proc->stats.bc[_IOC_NR(cmd)]++; 
   thread->stats.bc[_IOC_NR(cmd)]++; 
  } 
  switch (cmd) { 
  ...... 
  case BC_TRANSACTION: 
  case BC_REPLY: { 
   struct binder_transaction_data tr; 
 
   if (copy_from_user(&tr, ptr, sizeof(tr))) 
    return -EFAULT; 
   ptr += sizeof(tr); 
   binder_transaction(proc, thread, &tr, cmd == BC_REPLY); 
   break; 
      } 
 
  ...... 
  *consumed = ptr - buffer; 
 } 
 return 0; 
} 

       又再次进入到binder_transaction函数:

static void 
binder_transaction(struct binder_proc *proc, struct binder_thread *thread, 
struct binder_transaction_data *tr, int reply) 
{ 
 struct binder_transaction *t; 
 struct binder_work *tcomplete; 
 size_t *offp, *off_end; 
 struct binder_proc *target_proc; 
 struct binder_thread *target_thread = NULL; 
 struct binder_node *target_node = NULL; 
 struct list_head *target_list; 
 wait_queue_head_t *target_wait; 
 struct binder_transaction *in_reply_to = NULL; 
 struct binder_transaction_log_entry *e; 
 uint32_t return_error; 
 
 ...... 
 
 if (reply) { 
  in_reply_to = thread->transaction_stack; 
  if (in_reply_to == NULL) { 
   ...... 
   return_error = BR_FAILED_REPLY; 
   goto err_empty_call_stack; 
  } 
  binder_set_nice(in_reply_to->saved_priority); 
  if (in_reply_to->to_thread != thread) { 
   ....... 
   goto err_bad_call_stack; 
  } 
  thread->transaction_stack = in_reply_to->to_parent; 
  target_thread = in_reply_to->from; 
  if (target_thread == NULL) { 
   return_error = BR_DEAD_REPLY; 
   goto err_dead_binder; 
  } 
  if (target_thread->transaction_stack != in_reply_to) { 
   ...... 
   return_error = BR_FAILED_REPLY; 
   in_reply_to = NULL; 
   target_thread = NULL; 
   goto err_dead_binder; 
  } 
  target_proc = target_thread->proc; 
 } else { 
  ...... 
 } 
 if (target_thread) { 
  e->to_thread = target_thread->pid; 
  target_list = &target_thread->todo; 
  target_wait = &target_thread->wait; 
 } else { 
  ...... 
 } 
 
 
 /* TODO: reuse incoming transaction for reply */ 
 t = kzalloc(sizeof(*t), GFP_KERNEL); 
 if (t == NULL) { 
  return_error = BR_FAILED_REPLY; 
  goto err_alloc_t_failed; 
 } 
  
 
 tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL); 
 if (tcomplete == NULL) { 
  return_error = BR_FAILED_REPLY; 
  goto err_alloc_tcomplete_failed; 
 } 
 
 if (!reply && !(tr->flags & TF_ONE_WAY)) 
  t->from = thread; 
 else 
  t->from = NULL; 
 t->sender_euid = proc->tsk->cred->euid; 
 t->to_proc = target_proc; 
 t->to_thread = target_thread; 
 t->code = tr->code; 
 t->flags = tr->flags; 
 t->priority = task_nice(current); 
 t->buffer = binder_alloc_buf(target_proc, tr->data_size, 
  tr->offsets_size, !reply && (t->flags & TF_ONE_WAY)); 
 if (t->buffer == NULL) { 
  return_error = BR_FAILED_REPLY; 
  goto err_binder_alloc_buf_failed; 
 } 
 t->buffer->allow_user_free = 0; 
 t->buffer->debug_id = t->debug_id; 
 t->buffer->transaction = t; 
 t->buffer->target_node = target_node; 
 if (target_node) 
  binder_inc_node(target_node, 1, 0, NULL); 
 
 offp = (size_t *)(t->buffer->data + ALIGN(tr->data_size, sizeof(void *))); 
 
 if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) { 
  binder_user_error("binder: %d:%d got transaction with invalid " 
   "data ptr\n", proc->pid, thread->pid); 
  return_error = BR_FAILED_REPLY; 
  goto err_copy_data_failed; 
 } 
 if (copy_from_user(offp, tr->data.ptr.offsets, tr->offsets_size)) { 
  binder_user_error("binder: %d:%d got transaction with invalid " 
   "offsets ptr\n", proc->pid, thread->pid); 
  return_error = BR_FAILED_REPLY; 
  goto err_copy_data_failed; 
 } 
  
 ...... 
 
 if (reply) { 
  BUG_ON(t->buffer->async_transaction != 0); 
  binder_pop_transaction(target_thread, in_reply_to); 
 } else if (!(t->flags & TF_ONE_WAY)) { 
  ...... 
 } else { 
  ...... 
 } 
 t->work.type = BINDER_WORK_TRANSACTION; 
 list_add_tail(&t->work.entry, target_list); 
 tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE; 
 list_add_tail(&tcomplete->entry, &thread->todo); 
 if (target_wait) 
  wake_up_interruptible(target_wait); 
 return; 
 ...... 
} 

       注意,这里的reply为1,我们忽略掉其它无关代码。

       前面Service Manager正在binder_thread_read函数中被MediaPlayerService启动后进程唤醒后,在最后会把当前处理完的事务放在thread->transaction_stack中:

if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) { 
 t->to_parent = thread->transaction_stack; 
 t->to_thread = thread; 
 thread->transaction_stack = t; 
} 

       所以,这里,首先是把它这个binder_transaction取回来,并且放在本地变量in_reply_to中:

                      in_reply_to = thread->transaction_stack;  

       接着就可以通过in_reply_to得到最终发出这个事务请求的线程和进程:

                      target_thread = in_reply_to->from; 
                      target_proc = target_thread->proc;  

        然后得到target_list和target_wait:

                    target_list = &target_thread->todo;  
                    target_wait = &target_thread->wait;  

       下面这一段代码:

/* TODO: reuse incoming transaction for reply */ 
t = kzalloc(sizeof(*t), GFP_KERNEL); 
if (t == NULL) { 
 return_error = BR_FAILED_REPLY; 
 goto err_alloc_t_failed; 
} 
 
 
tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL); 
if (tcomplete == NULL) { 
 return_error = BR_FAILED_REPLY; 
 goto err_alloc_tcomplete_failed; 
} 
 
if (!reply && !(tr->flags & TF_ONE_WAY)) 
 t->from = thread; 
else 
 t->from = NULL; 
t->sender_euid = proc->tsk->cred->euid; 
t->to_proc = target_proc; 
t->to_thread = target_thread; 
t->code = tr->code; 
t->flags = tr->flags; 
t->priority = task_nice(current); 
t->buffer = binder_alloc_buf(target_proc, tr->data_size, 
 tr->offsets_size, !reply && (t->flags & TF_ONE_WAY)); 
if (t->buffer == NULL) { 
 return_error = BR_FAILED_REPLY; 
 goto err_binder_alloc_buf_failed; 
} 
t->buffer->allow_user_free = 0; 
t->buffer->debug_id = t->debug_id; 
t->buffer->transaction = t; 
t->buffer->target_node = target_node; 
if (target_node) 
 binder_inc_node(target_node, 1, 0, NULL); 
 
offp = (size_t *)(t->buffer->data + ALIGN(tr->data_size, sizeof(void *))); 
 
if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) { 
 binder_user_error("binder: %d:%d got transaction with invalid " 
  "data ptr\n", proc->pid, thread->pid); 
 return_error = BR_FAILED_REPLY; 
 goto err_copy_data_failed; 
} 
if (copy_from_user(offp, tr->data.ptr.offsets, tr->offsets_size)) { 
 binder_user_error("binder: %d:%d got transaction with invalid " 
  "offsets ptr\n", proc->pid, thread->pid); 
 return_error = BR_FAILED_REPLY; 
 goto err_copy_data_failed; 
} 

          我们在前面已经分析过了,这里不再重复。但是有一点要注意的是,这里target_node为NULL,因此,t->buffer->target_node也为NULL。

          函数本来有一个for循环,用来处理数据中的Binder对象,这里由于没有Binder对象,所以就略过了。到了下面这句代码:

                   binder_pop_transaction(target_thread, in_reply_to);  

          我们看看做了什么事情: 

static void 
binder_pop_transaction( 
 struct binder_thread *target_thread, struct binder_transaction *t) 
{ 
 if (target_thread) { 
  BUG_ON(target_thread->transaction_stack != t); 
  BUG_ON(target_thread->transaction_stack->from != target_thread); 
  target_thread->transaction_stack = 
   target_thread->transaction_stack->from_parent; 
  t->from = NULL; 
 } 
 t->need_reply = 0; 
 if (t->buffer) 
  t->buffer->transaction = NULL; 
 kfree(t); 
 binder_stats.obj_deleted[BINDER_STAT_TRANSACTION]++; 
} 

        由于到了这里,已经不需要in_reply_to这个transaction了,就把它删掉。

        回到binder_transaction函数:   

t->work.type = BINDER_WORK_TRANSACTION; 
list_add_tail(&t->work.entry, target_list); 
tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE; 
list_add_tail(&tcomplete->entry, &thread->todo); 

和前面一样,分别把t和tcomplete分别放在target_list和thread->todo队列中,这里的target_list指的就是最初调用IServiceManager::addService的MediaPlayerService的Server主线程的的thread->todo队列了,而thread->todo指的是Service Manager中用来回复IServiceManager::addService请求的线程。

        最后,唤醒等待在target_wait队列上的线程了,就是最初调用IServiceManager::addService的MediaPlayerService的Server主线程了,它最后在binder_thread_read函数中睡眠在thread->wait上,就是这里的target_wait了:

                  if (target_wait)  
                              wake_up_interruptible(target_wait);  

        这样,Service Manger回复调用IServiceManager::addService请求就算完成了,重新回到frameworks/base/cmds/servicemanager/binder.c文件中的binder_loop函数等待下一个Client请求的到来。事实上,Service Manger回到binder_loop函数再次执行ioctl函数时候,又会再次进入到binder_thread_read函数。这时个会发现thread->todo不为空,这是因为刚才我们调用了:

                 list_add_tail(&tcomplete->entry, &thread->todo);  

         把一个工作项tcompelete放在了在thread->todo中,这个tcompelete的type为BINDER_WORK_TRANSACTION_COMPLETE,因此,Binder驱动程序会执行下面操作:

switch (w->type) { 
case BINDER_WORK_TRANSACTION_COMPLETE: { 
 cmd = BR_TRANSACTION_COMPLETE; 
 if (put_user(cmd, (uint32_t __user *)ptr)) 
  return -EFAULT; 
 ptr += sizeof(uint32_t); 
 
 list_del(&w->entry); 
 kfree(w); 
  
 } break; 
 ...... 
} 


        binder_loop函数执行完这个ioctl调用后,才会在下一次调用ioctl进入到Binder驱动程序进入休眠状态,等待下一次Client的请求。

        上面讲到调用IServiceManager::addService的MediaPlayerService的Server主线程被唤醒了,于是,重新执行binder_thread_read函数:

static int 
binder_thread_read(struct binder_proc *proc, struct binder_thread *thread, 
     void __user *buffer, int size, signed long *consumed, int non_block) 
{ 
 void __user *ptr = buffer + *consumed; 
 void __user *end = buffer + size; 
 
 int ret = 0; 
 int wait_for_proc_work; 
 
 if (*consumed == 0) { 
  if (put_user(BR_NOOP, (uint32_t __user *)ptr)) 
   return -EFAULT; 
  ptr += sizeof(uint32_t); 
 } 
 
retry: 
 wait_for_proc_work = thread->transaction_stack == NULL && list_empty(&thread->todo); 
 
 ...... 
 
 if (wait_for_proc_work) { 
  ...... 
 } else { 
  if (non_block) { 
   if (!binder_has_thread_work(thread)) 
    ret = -EAGAIN; 
  } else 
   ret = wait_event_interruptible(thread->wait, binder_has_thread_work(thread)); 
 } 
  
 ...... 
 
 while (1) { 
  uint32_t cmd; 
  struct binder_transaction_data tr; 
  struct binder_work *w; 
  struct binder_transaction *t = NULL; 
 
  if (!list_empty(&thread->todo)) 
   w = list_first_entry(&thread->todo, struct binder_work, entry); 
  else if (!list_empty(&proc->todo) && wait_for_proc_work) 
   w = list_first_entry(&proc->todo, struct binder_work, entry); 
  else { 
   if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */ 
    goto retry; 
   break; 
  } 
 
  ...... 
 
  switch (w->type) { 
  case BINDER_WORK_TRANSACTION: { 
   t = container_of(w, struct binder_transaction, work); 
          } break; 
  ...... 
  } 
 
  if (!t) 
   continue; 
 
  BUG_ON(t->buffer == NULL); 
  if (t->buffer->target_node) { 
   ...... 
  } else { 
   tr.target.ptr = NULL; 
   tr.cookie = NULL; 
   cmd = BR_REPLY; 
  } 
  tr.code = t->code; 
  tr.flags = t->flags; 
  tr.sender_euid = t->sender_euid; 
 
  if (t->from) { 
   ...... 
  } else { 
   tr.sender_pid = 0; 
  } 
 
  tr.data_size = t->buffer->data_size; 
  tr.offsets_size = t->buffer->offsets_size; 
  tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset; 
  tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *)); 
 
  if (put_user(cmd, (uint32_t __user *)ptr)) 
   return -EFAULT; 
  ptr += sizeof(uint32_t); 
  if (copy_to_user(ptr, &tr, sizeof(tr))) 
   return -EFAULT; 
  ptr += sizeof(tr); 
 
  ...... 
 
  list_del(&t->work.entry); 
  t->buffer->allow_user_free = 1; 
  if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) { 
   ...... 
  } else { 
   t->buffer->transaction = NULL; 
   kfree(t); 
   binder_stats.obj_deleted[BINDER_STAT_TRANSACTION]++; 
  } 
  break; 
 } 
 
done: 
 ...... 
 return 0; 
} 

         在while循环中,从thread->todo得到w,w->type为BINDER_WORK_TRANSACTION,于是,得到t。从上面可以知道,Service Manager反回了一个0回来,写在t->buffer->data里面,现在把t->buffer->data加上proc->user_buffer_offset,得到用户空间地址,保存在tr.data.ptr.buffer里面,这样用户空间就可以访问这个返回码了。由于cmd不等于BR_TRANSACTION,这时就可以把t删除掉了,因为以后都不需要用了。

         执行完这个函数后,就返回到binder_ioctl函数,执行下面语句,把数据返回给用户空间:

if (copy_to_user(ubuf, &bwr, sizeof(bwr))) { 
 ret = -EFAULT; 
 goto err; 
} 

         接着返回到用户空间IPCThreadState::talkWithDriver函数,最后返回到IPCThreadState::waitForResponse函数,最终执行到下面语句:

status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult) 
{ 
 int32_t cmd; 
 int32_t err; 
 
 while (1) { 
  if ((err=talkWithDriver()) < NO_ERROR) break; 
   
  ...... 
 
  cmd = mIn.readInt32(); 
 
  ...... 
 
  switch (cmd) { 
  ...... 
  case BR_REPLY: 
   { 
    binder_transaction_data tr; 
    err = mIn.read(&tr, sizeof(tr)); 
    LOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY"); 
    if (err != NO_ERROR) goto finish; 
 
    if (reply) { 
     if ((tr.flags & TF_STATUS_CODE) == 0) { 
      reply->ipcSetDataReference( 
       reinterpret_cast(tr.data.ptr.buffer), 
       tr.data_size, 
       reinterpret_cast(tr.data.ptr.offsets), 
       tr.offsets_size/sizeof(size_t), 
       freeBuffer, this); 
     } else { 
      ...... 
     } 
    } else { 
     ...... 
    } 
   } 
   goto finish; 
 
  ...... 
  } 
 } 
 
finish: 
 ...... 
 return err; 
} 

        注意,这里的tr.flags等于0,这个是在上面的binder_send_reply函数里设置的。最终把结果保存在reply了:

reply->ipcSetDataReference( 
  reinterpret_cast(tr.data.ptr.buffer), 
  tr.data_size, 
  reinterpret_cast(tr.data.ptr.offsets), 
  tr.offsets_size/sizeof(size_t), 
  freeBuffer, this); 

       这个函数我们就不看了,有兴趣的读者可以研究一下。

       从这里层层返回,最后回到MediaPlayerService::instantiate函数中。

       至此,IServiceManager::addService终于执行完毕了。这个过程非常复杂,但是如果我们能够深刻地理解这一过程,将能很好地理解Binder机制的设计思想和实现过程。这里,对IServiceManager::addService过程中MediaPlayerService、ServiceManager和BinderDriver之间的交互作一个小结:

Android系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析_第2张图片

        回到frameworks/base/media/mediaserver/main_mediaserver.cpp文件中的main函数,接下去还要执行下面两个函数:

                 ProcessState::self()->startThreadPool(); 
                 IPCThreadState::self()->joinThreadPool();  

        首先看ProcessState::startThreadPool函数的实现:

void ProcessState::startThreadPool() 
{ 
 AutoMutex _l(mLock); 
 if (!mThreadPoolStarted) { 
  mThreadPoolStarted = true; 
  spawnPooledThread(true); 
 } 
} 

       这里调用spwanPooledThread:

void ProcessState::spawnPooledThread(bool isMain) 
{ 
 if (mThreadPoolStarted) { 
  int32_t s = android_atomic_add(1, &mThreadPoolSeq); 
  char buf[32]; 
  sprintf(buf, "Binder Thread #%d", s); 
  LOGV("Spawning new pooled thread, name=%s\n", buf); 
  sp t = new PoolThread(isMain); 
  t->run(buf); 
 } 
} 

       这里主要是创建一个线程,PoolThread继续Thread类,Thread类定义在frameworks/base/libs/utils/Threads.cpp文件中,其run函数最终调用子类的threadLoop函数,这里即为PoolThread::threadLoop函数:

virtual bool threadLoop() 
{ 
 IPCThreadState::self()->joinThreadPool(mIsMain); 
 return false; 
} 

       这里和frameworks/base/media/mediaserver/main_mediaserver.cpp文件中的main函数一样,最终都是调用了IPCThreadState::joinThreadPool函数,它们的区别是,一个参数是true,一个是默认值false。我们来看一下这个函数的实现:

void IPCThreadState::joinThreadPool(bool isMain) 
{ 
 LOG_THREADPOOL("**** THREAD %p (PID %d) IS JOINING THE THREAD POOL\n", (void*)pthread_self(), getpid()); 
 
 mOut.writeInt32(isMain ? BC_ENTER_LOOPER : BC_REGISTER_LOOPER); 
 
 ...... 
 
 status_t result; 
 do { 
  int32_t cmd; 
 
  ....... 
 
  // now get the next command to be processed, waiting if necessary 
  result = talkWithDriver(); 
  if (result >= NO_ERROR) { 
   size_t IN = mIn.dataAvail(); 
   if (IN < sizeof(int32_t)) continue; 
   cmd = mIn.readInt32(); 
   ...... 
   } 
 
   result = executeCommand(cmd); 
  } 
 
  ...... 
 } while (result != -ECONNREFUSED && result != -EBADF); 
 
 ....... 
 
 mOut.writeInt32(BC_EXIT_LOOPER); 
 talkWithDriver(false); 
} 

        这个函数最终是在一个无穷循环中,通过调用talkWithDriver函数来和Binder驱动程序进行交互,实际上就是调用talkWithDriver来等待Client的请求,然后再调用executeCommand来处理请求,而在executeCommand函数中,最终会调用BBinder::transact来真正处理Client的请求:

status_t IPCThreadState::executeCommand(int32_t cmd) 
{ 
 BBinder* obj; 
 RefBase::weakref_type* refs; 
 status_t result = NO_ERROR; 
 
 switch (cmd) { 
 ...... 
 
 case BR_TRANSACTION: 
  { 
   binder_transaction_data tr; 
   result = mIn.read(&tr, sizeof(tr)); 
    
   ...... 
 
   Parcel reply; 
    
   ...... 
 
   if (tr.target.ptr) { 
    sp b((BBinder*)tr.cookie); 
    const status_t error = b->transact(tr.code, buffer, &reply, tr.flags); 
    if (error < NO_ERROR) reply.setError(error); 
 
   } else { 
    const status_t error = the_context_object->transact(tr.code, buffer, &reply, tr.flags); 
    if (error < NO_ERROR) reply.setError(error); 
   } 
 
   ...... 
  } 
  break; 
 
 ....... 
 } 
 
 if (result != NO_ERROR) { 
  mLastError = result; 
 } 
 
 return result; 
} 

        接下来再看一下BBinder::transact的实现:

status_t BBinder::transact( 
 uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) 
{ 
 data.setDataPosition(0); 
 
 status_t err = NO_ERROR; 
 switch (code) { 
  case PING_TRANSACTION: 
   reply->writeInt32(pingBinder()); 
   break; 
  default: 
   err = onTransact(code, data, reply, flags); 
   break; 
 } 
 
 if (reply != NULL) { 
  reply->setDataPosition(0); 
 } 
 
 return err; 
} 

       最终会调用onTransact函数来处理。在这个场景中,BnMediaPlayerService继承了BBinder类,并且重载了onTransact函数,因此,这里实际上是调用了BnMediaPlayerService::onTransact函数,这个函数定义在frameworks/base/libs/media/libmedia/IMediaPlayerService.cpp文件中:

status_t BnMediaPlayerService::onTransact( 
 uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) 
{ 
 switch(code) { 
  case CREATE_URL: { 
   ...... 
       } break; 
  case CREATE_FD: { 
   ...... 
      } break; 
  case DECODE_URL: { 
   ...... 
       } break; 
  case DECODE_FD: { 
   ...... 
      } break; 
  case CREATE_MEDIA_RECORDER: { 
   ...... 
         } break; 
  case CREATE_METADATA_RETRIEVER: { 
   ...... 
          } break; 
  case GET_OMX: { 
   ...... 
      } break; 
  default: 
   return BBinder::onTransact(code, data, reply, flags); 
 } 
} 

       至此,我们就以MediaPlayerService为例,完整地介绍了Android系统进程间通信Binder机制中的Server启动过程。Server启动起来之后,就会在一个无穷循环中等待Client的请求了。在下一篇文章中,我们将介绍Client如何通过Service Manager远程接口来获得Server远程接口,进而调用Server远程接口来使用Server提供的服务,敬请关注。

你可能感兴趣的:(Android系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析)